
Inference of a Minimum Size Boolean Function

from Examples by Using a New Efficient
Branch-and-Bound Approach

E V A N G E L O S T R I A N T A P H Y L L O U
Dept. of Industrial and Manufacturing Systems Engineering, Louisiana State University,
3134C CEBA Building, Baton Rouge, LA 70803-6409, U.S.A.
(E-mail: IETRIAN@LSUVM.SNCC.LSU.EDU)

(Received: 1 October 1992; accepted: 22 September 1993)

Abstract. This paper deals with the problem of identifying a hidden Boolean function ,.~:
{0, 1}t---> {0, 1} from positive and negative examples. This problem is of paramount importance in
many real life applications of artificial intelligence. The method proposed in this paper is based on a
branch-and-bound approach. This approach is an expansion of some earlier work (Triantaphyllou et
al., 1994). Computational results, comparing the new method with one based on Karmakar's interior
point method, suggest that the new method is very efficient.

Key words. Inductive inference, Boolean functions, clause satisfiability problem, maximum clique,
interior point method, artifcial intelligence.

1. Introduction

This paper deals with the problem of inductive inference. That is, given sets of
examples infer a set of rules. This problem is of considerable importance in
artificial intelligence and, in particular, in machine learning. A number of
algorithms which implement learning from examples can be found in
[5, 8, 20, 21, 22, 23, 15]. An excellent survey on inductive inference approaches is
given in [1]. Complexity issues of this type of learning have been studied by
[27, 28, 17, 19].

In the type of learning considered in this paper, examples are classified either as
positive or as negative. Then, the issue is to determine a Boolean expression
which classifies all the positive and negative examples correctly. An early
definition of this problem was given in Bongard [2] (the original book was
published in Russian in 1967). This problem is NP-complete (see, for instance,
[3, 9]). Some recent developments can be found in [23, 15]. Usually, such a
Boolean function is expressed in the conjunctive normal form (CNF) or in the
disjunctive normal form (DNF). See, for instance [4, 7, 10, 11, 12, 13, 14, 29, 30].
Peysakh in [18] describes an algorithm for converting any Boolean expression into
CNF.

The general form of a CNF and DNF system (i.e., a Boolean function) is

Journal of Global Optimization 5: 69-94, 1994.
(~ 1994 Kluwer Academic Publishers. Printed in the Netherlands.

70 EVANGELOS TRIANTAPHYLLOU

defined as (I) and (II), respectively. That is:

and

(I)

and negative examples are known:

l o

E + 1 0 and
0 1
0 0

E - =

1 0 1 0
~ 0 0 1

1 1 1
0 0 0 "
0 0 0
1 1 0

 II,
j = l i �9

where a i is either A i or -4i. That is, a CNF expression is a conjunction of
disjunctions, while a DNF expression is a disjunction of conjunctions. These
conjunctions and disjunctions are also called logical clauses.

Let {A1, A 2 , a 3 A t } b e a set of t Boolean predicates or atoms. Each atom
A; (i = 1, 2, 3 , . . . , t) can be either true (denoted by 1) or false (denoted by 0).
Let ~ be a Boolean function over these atoms. That is, ~- is a mapping from
{0, 1}t-+ {0, 1} which determines for each combination of truth values of the
arguments A 1, A2, A3 , At of ~ , whether ~ is true or false (denoted as 1
and 0, respectively). For each Boolean function o ~, the positive examples are the
vectors o E {0, 1} t such that ~ (v) = 1. Similarly, the negative examples are the
vectors v E {0, 1}' such that o~(v) = 0. Therefore, given a function ~- defined on
the t atoms {A1, a 2 , a 3 , . . . , A t } , then a vector v E {0, 1}' is either a positive
or a negative example. Equivalently, we say that a vector v E {0, 1,}' is accepted
(or rejected) by a Boolean function ~ if and only if the vector v is a positive (or a
negative) example of ~.

In the present paper, a set of positive examples will be denoted as E +.
Similarly, a set of negative examples will be denoted as E - . The cardinalities of
the two sets E + and E - will be denoted as M 1 and M 2 , respectively. Given two
sets of positive and negative examples, then the constraints to be satisfied by a
system (i.e., a Boolean function) are as follows. In the CNF case, each positive
example should be accepted by all the disjunctions in the CNF expression and
each negative example should be rejected by at least one of the disjunctions. In
the case of DNF systems, any positive example should be accepted by at least one
of the conjunctions in the DNF'expression, while each negative example should
be rejected by all the conjunctions.

The main idea of this paper is described in the following illustration. A series of
examples (binary vectors) is somehow known. These examples are classified as
either positive or negative. For this illustration suppose that the following positive

INFERENCE OF A BOOLEAN FUNCTION FROM EXAMPLES 71

What we seek is a set of logical clauses which correctly classify all the examples.
One such set of logical clauses (in CNF form) is as follows:

(Aa v A4)

(>i2 v A3)

(A 1 v A 3 v A4)"

The main problem examined in this paper is how to construct a set of logical
clauses (i.e., a Boolean function) which satisfies the requirements of two
collections of examples E § and E- . Given two sets of positive and negative
examples, it is possible that more than one Boolean function satisfy the
corresponding constraints. For reasons of simplicity, however, we are interested
in a Boolean function with the minimum number of conjunctions or disjunctions
(if it is in the DNF or CNF form, respectively).

2. Some Background Information

The following two sub-sections briefly describe two clause inference algorithms.
Both algorithms use collections of positive and negative examples as the input
data. The first algorithm is based on a branch-and-bound approach and infers
CNF clauses [23]. The second algorithm infers DNF clauses and is based on
formulating a clause satisfiability (SAT) problem [15] and then solving this SAT
by using an interior point method described in [16].

Besides the fact that the first algorithm infers CNF systems, while the second
infers DNF systems, the two approaches have another major difference. The first
approach uses a heuristic which returns a very small (not necessarily minimal)
number of disjunctions in the proposed CNF system. However, the second
approach assumes a given number, say k, of conjunctions in the DNF system to
be inferred and solves a SAT problem. If this SAT problem is infeasible, then the
conclusion is that there is no DNF system which has k (or less) conjunctions and
satisfies the requirements imposed by the examples. Therefore, by using succes-
sively lower k values the SAT approach can be used to determine a minimum size
DNF system (by minimum size we mean a system with the minimum number of
conjunctions).

It should be emphasized here that it is not very critical whether an inference
algorithm determines a CNF or DNF system (i.e., CNF or DNF Boolean
function). In [24] it is shown that it is possible to derive either a CNF or DNF
system using any clause inference algorithm. Furthermore, some decomposition
approaches for large scale inference problems can be found in [25]. Finally, an
approach for guided learning can be found in [26]. Guided learning can be used to
derive the examples in such a way that a hidden Boolean function can be inferred
by using only a few examples (when compared with random collections of
examples).

72 EVANGELOS TRIANTAPHYLLOU

2.1. THE ONE CLAUSE AT A TIME APPROACH

In [23] an algorithm which infers CNF systems from positive and negative
examples is developed. In that approach, CNF clauses are generated in a way
which approximates the minimum number of CNF clauses that constitute the
recommended CNF system. In this way, a compact CNF system can be derived.
The strategy followed there is called the One Clause at a T ime (or O C A T)
approach.

The O C A T approach is greedy in nature. It uses as input data two collections of
positive and negative examples (denoted as E + and E - , respectively). It
determines a set of CNF clauses which, when taken together, rejects all the
negative examples and accepts all the positive examples. The O CA T approach is
sequential. In the first iteration it determines a single clause (i.e., a disjunction)
which accepts all the positive examples in the E § set while it rejects as m a n y

negative examples in E - as possible. This is the greedy aspect of the approach. In
the second iteration it performs the same task using the original E § set but the
revised E - set has only those negative examples which have not been rejected by
any (i.e., the first) clause so far. The iterations continue until a set of clauses is
constructed which reject all the negative examples in the original E - set (see also
Figure 1). Recall that M 2 denotes the number of the negative examples. Then the
following theorem states a critical property of the O CA T approach.

T H E O R E M 1 [23]. The O C A T approach terminates within M z iterations.

The core of the OCAT approach is step 2, in Figure 1. In [23] a branch-and-
bound based algorithm is presented which solves the problem posed in step 2. The
O C A T approach returns the set of desired clauses (i.e., the CNF system) as set C.
Because the proposed branch-and-bound approach is an extension of the branch-
and-bound approach developed in [23], the next sub-section briefly highlights the
old approach.

i=0; C=~;
DO WHILE (E- ~ 0)

Step 1 : i ~---i + 1; /*i indicates the i-th clause */
Step 2: Find a clause c i which accepts all members of E §

while it rejects as many members of E- as possible;
Step 3: Let E-(ci) be the set of members of E- which are rejected by ci;
Step4: Let C ,=--C t.)c~;
Step 5: Let E- *--E- - E-(ci);

REPEAT;

Fig. 1. The one clause at a time (OCAT) approach.

I N F E R E N C E OF A B O O L E A N F U N C T I O N F R O M E X A M P L E S 73

2.2. THE ORIGINAL BRANCH-AND-BOUND APPROACH

The original branch-and-bound (B &B) approach is best described with an
illustrative example. Consider the E + and E - examples given in the introduction
section. We number the positive examples as (1, 2, 3, 4) and the negative
examples as (1, 2, 3, 4, 5, 6). The B & B approach will determine a single clause
which accepts all the positive examples in the E + set, while rejecting as many
negative examples from the current E - set as possible.

Consider the first positive example (0, 1, 0, 0). Observe that in order to accept
this positive example at least one of the four atoms A1, A z, A 3 , A4 must be
specified as follows: (AI=FALSE, i.e., f i~I=TRUE), (A2=TRUE) , (A3=
FALSE, i.e., 4 3 = TRUE), and (A 4 = FALSE, i.e., fi~4 = TRUE). Hence, any
valid CNF clause must include -A1, or A z, or "A3, or /~4- Similarly, the second
positive example (1, 1, 0, 0) indicates that any valid CNF clause must include A1,
or Az, or A3, or -A4. In this manner, all valid CNF clauses must include at least
one atom as specified from each of the following sets: {A1,A2,/~3,-,~4},
{A1,A2,fi~3,.,{4}, {.41,A2,A3,A4}, and {A~,A2,_,t3,A4}.

At this point define as NEG(A,) the set of the negative examples which are
accepted by a clause when the atom A k is included in that clause. For the current
illustrative example the NEG(Ak) sets are presented in Table I. Furthermore,
denote by ATOMS(v) the set of the atoms that are true in a particular (either
positive or negative) example v (where v E {1, 0}', and t is the number of atoms).
In the light of the sets with the negative examples in Table I and the requirement
the proposed clause to accept all the four positive examples and reject as many
negative examples as possible, the following minimization problem is derived:

MINIMIZE

subject to:

/31 ~ B1 --"

/32 ~ B2 =

133 C B 3 =

/34 E B 4 =

] /3i
i=1

{{2, 4}, {3, 6}, {2, 4, 5}, {1, 4, 5, 6}}

{{1, 3, 5, 6}, {3, 6}, {2, 4, 5}, {1, 4, 5, 6}}

{{2, 4}, {1, 2, 4, 5}, {1, 3, 6}, {2, 3}}

{{1, 3, 5, 6}, (1, 2, 4, 5}, {2, 4, 5}, {2, 3}}.

Table I. The NEG(Ak) sets for the illustrative example

Atom Set of Negative Examples Atom Set of Negative Examples

A I NEG(A1) = {1, 3, 5, 6} 41 NEG(_A1) = {2, 4}
A 2 NEG(A2) = {3, 6} Az NEG(/i2) = {1, 2, 4, 5}
A 3 NEG(A3) = {1, 3, 6} -43 NEG(fi%) = {2, 4, 5}
A 4 NEG(A4) = {2, 3} ~z~ 4 NEG(A4) = {t, 4, 5, 6}

74 E V A N G E L O S T R I A N T A P H Y L L O U

This formulation leads to a B & B search as follows. The search has four stages
(or levels in the search tree); one stage for each of the four positive examples.
The root of the search tree is the empty set. Each interior node (i.e., nodes with
descendents), say at level h (where 1 ~< h < 4), is connected to t (where t is the
number of atoms) nodes in the next higher level via t arcs. These t arcs represent
the atoms that are true in the h-th positive example (i.e., the members of the set
ATOMS(ah), where a h is the h-th positive example). The nodes (or search states)
in this graph represent sets of negative examples.

The set of negative examples which corresponds to a node (state) is the set of
all the negative examples accepted by the atoms which correspond to the arcs that
connect that node with the root node. That is, if one is at node (state) YK and
follows the arc which corresponds to the atom Ai, then the resulting state, say
YL, is:

YL = YK U NEG(A,).

The search tree for the current illustrative example is depicted in Figure 2. Note
that not all states need to be expanded. This occurs because each node of the tree
is examined in terms of two fathoming tests. If any of these two tests succeeds,
then the node is fathomed and it is not expanded further. Consider the two nodes
which correspond to the two states {2, 4, 5} and {1, 2, 4, 5, 6} in the second stage
of the search tree (see also Figure 2). Clearly, the states which correspond to the
leaves (terminal nodes) which have the state {1,2, 4, 5, 6} as an ancestor are
going to have at least as many members (i.e., negative examples) as the states of
the leaves (terminal nodes) which have as ancestor the state {2, 4, 5}. This is true
because subsequent states are derived by performing union operations on these
two states with the same sets. Therefore, if at any stage of building the search tree
there is a state which has another state (in the current stage) as a subset, then that
state (node) can be fathomed without eliminating any optimal solutions. This is
the first fathoming test.

For the second fathoming test, suppose that it is known (possibly via a
heuristic) that one of the terminal states in the B & B search (not necessarily an
optimal one) has k elements. Then, at any stage of the B & B approach, all states
which have more than k elements can be deleted from further consideration. This
is true because any descendent of a state may only get larger at subsequent stages.
The way these fathoming tests were applied and more on this B & B search, along
with some computational results, can be found in [23].

2.3. CLAUSE INFERENCE AS A SATISFIABILITY PROBLEM

In [15] it is shown that given two collections of positive and negative examples,
then a DNF system can be inferred to satisfy the requirements of these examples.
This is achieved by formulating a satisfiability (SAT) problem and then using the

INFERENCE OF A BOOLEAN FUNCTION FROM EXAMPLES 75

A1 �9 {1,3,5,6)

} ~ 41,2,3,6}
/ / / ~ e {1,3,6 (1,2,3,4,5,6)

A~'~'~ I 41,2,3,4,5,6)
~ 41,3,5,6} /

/ y k . ~ . ~ e {2,3,61~ Al--~e 41,2, 3'5,8}

A2 �9 13,6 42,3,
I _ 41'2'3'4'5'6}

A4 �9 41,3,4,5,6} A3%k�9 {2,3,4,5,6}

/ ~ ~3/" 41.2,3,~,s,~)/~1" {~,~,~,~,~.6~
~ {i,2,3,4,5,6} /

~/~ 1 4 2 , 4 ~ � 9 42,4,5 ~ 41,2,4,s) %'~'~, 42,4,s)~t~.l
~4~�9 41,2,4,5, 6} Solution

{~'--~'A3 0 42,4,S}

�9 41, , , }~

~ i {1"3'4's'6) ~. 41,3,4,s,6)
{ 1'2"4'5'6} /

}~/~.AI:{1'2"3'4"5'6}

{1,4,5,6 41,2,4,5,6}
A2"'"L�9 {1,2,4,5,6}

Fig. 2. The search tree when the original B & B approach is applied on the illustrative
example.

interior point method developed in [16] to solve it. This approach pre-assumes the
value of k; the number of conjunctions in the DNF system. The SAT problem
uses the following Boolean variables [15]:

76 E V A N G E L O S T R I A N T A P H Y L L O U

S j i - =

(a = S J i

O'ji Sj i

~, (1
Z j : Oi

if A 1 is in the]-th conjunction
if A~ is not in the j-th conjunction

if A1 is in the j-th conjunction

if Ai is not in the]-th conjunction

if A~ = 1 in the positive example a ~ E §

if A~ in the positive example a E E §

if the Positive example a is accepted by the]-th conjunction
otherwise.

Then, the clauses of this SAT problem are as follows (where n is the number of
atoms):

t
S]iVSj i , i = l , . . . , n , j = l , . . . , k (1)

(x) sji v ~.i , j = l , k , r = l , . . . , M 2 (2)
i r i - r

k
c~ Vzi ' a = l , . . . , M 1 (3)

i=1

-~ i = 1, n j = 1, k a = 1, M 1 (4) O '] i V Z] , . . . , , . . . , , . . . , ,

where Pr is the set of indices of A for which A i = 1 in the negative example
r ~ E - . Similarly, Pr is the set of indices of A for which A i = 0 in the negative
example r E E - .

Clauses of type (1) ensure that never both A i and Ai will appear in any
conjunction. Clauses of type (2) ensure that each negative example is rejected by
all conjunctions. Clauses of type (3) ensure that each positive example is accepted
by at least one conjunction. Finally, clauses of type (4) ensure that z 7 = 1 if and
only if the positive example a is accepted by the j-th conjunction. In general, this
SAT problem has k (n (M I + 1) + M2) + M 1 clauses, and k (2 n + M1) Boolean
variables. A detailed example of this formulation can be found in [15].

3. The New Branch-and-Bound Algorithm

The new branch-and-bound algorithm will also be demonstrated on the examples
presented in the first section. Recall that these examples are as follows:

E + = 1 0
0 1 and
0 0

E - =
0001 0001
1 1

0 0 i " 0 0
1 1

INFERENCE OF A BOOLEAN FUNCTION FROM EXAMPLES 77

At first, it will be shown how the algorithm can derive a CNF clause. Next, the

basic algorithm will be modified to derive D N F clauses. Recall that for the CNF
case, the requirement is the clause to accept all the positive examples, while

rejecting as many negative examples as possible.

3.1. GENERATING A CNF CLAUSE

Define as POS(Ak) the set of the positive examples which are accepted by a CNF
clause when the a tom A k is included in that clause. The new B & B algorithm also
uses the concepts of the N E G (A k) and ATOMS(v) sets, as they were defined in

the previous section. The POS(A~) sets for the current illustrative example are
given in Table II. For the new search, the N E G (A k) sets in Table I are also going

to be used.
Now the search states are described in terms of two sets. The first set refers to

the positive examples which are accepted by the atoms which correspond to the
arcs which connect that state (node) with the root node. Similarly, the second set

refers to the negative examples which are accepted by the atoms which correspond
to the arcs which connect that state with the root node. Suppose that we are at
state S~ = [Pi, N~] (where Pi, N~ correspond to the previous two sets of positive
and negative examples, respectively). Now assume that the search considers the

state (node) which is derived by following the arch which corresponds to the a tom
A~. Then, the new state is: S t = [Pj, Nj], where the new sets Pj and N, are defined

as follows:

Pj = Pi U POS(A~), and

= N~ U N E G (A k) .

Therefore , the search continues until terminal states are reached. A state
Si = [Pi, N~] is a terminal state if and only if the set Pi refers to all positive
examples. That is, if and only if Pi = {1, 2, 3 M1}. Apparent ly , a terminal
state with a minimum cardinality of the set N i is optimal (in the O C A T sense). In
the light of the previous considerations, the problem to be solved by the B & B
search can be summarized as follows (where a~ is either Ag or A~):

Table II. The POS(Ak) sets for the illustrative example

Atom Set of Positive Examples Atom Set of Positive Examples

A~ POS(A~) = ,[2, 4} Aa POS(fi,~) = {1, 3}
a 2 POS(Az) = {1, 2} ~,z~ 2 POS(fi~2) = {3, 4}
A 3 POS(A3) = {3} A3 eos(fi~3) = {1, 2, 4}
a , POS(A,) = {3, 4} 4 4 POS(_A,) = (1, 2}

78 EVANGELOS TRIANTAPHYLLOU

Find a set o f atoms S such that the fo l lowing two conditions are true:

I(._J NEG(a~) = MINIMUM, and
ai~S

(..J POS(ai) = E + .
aiES

Given the above definitions some useful derivations are possible. We say that a
state S i absorbs another state S t if by expanding the state Sj we cannot reach any
better terminal state than the ones derived by expanding the state S i . In such a
case we call the state S t an absorbed state. From the previous considerations it
becomes obvious that once a state can be identified to be an absorbed state, then
it can be dropped from further consideration. Then the following two theorems
are applicable only when a CNF clause is to be generated and they provide some
conditions for identifying absorbed states. The proofs of these theorems follow
directly from the previous definitions and discussion.

T H E O R E M 2. The state S i = [Pi, N~] absorbs the state S t = [Pj, Nj] i f the fo l lowing

condit ion is true:

Pj C P i and Ni C N j .

T H E O R E M 3. Suppose that S~ = [Pi, N~] is a terminal state. Then, any state

Sj = [Pt , Nj], such that INjl >! INil, is absorbed by the state S i .

The search tree for the current illustrative example is depicted in Figure 3.
Observe that the arcs starting from a given node (search state) are not in the order
A1, A2, A 3 , - - . ,A4 (as was the case with the original B & B search) but,
instead, they are ranked. They are ranked in terms of two criteria as follows. The
first criterion is to rank the atoms in descending order of the size of the
corresponding POS(Ak) set (as given in Table II). If there is a tie, then they are
ranked in ascending order in terms of the size of the corresponding NEG(Ag) set
(as given in Table I). Therefore, the resulted ranking is as follows: -43, A2, A4,
fi~i, A4, A1, fii2, A3, In this way, it is more likely to reach terminal states
quickly, and thus the fathoming test of Theorem 2 can be utilized more
frequently.

The search tree in Figure 3 indicates that fathoming of states may occur very
often. In this figure, Rule #2 refers to the application of Theorem 3. For
instance, the state [{1, 2, 4}, {1, 2, 3, 5}] needs not to be expanded (i.e., it is an
absorbed state) because there is a terminal state which has a size of the N~ set
equal to 3 (the absorbed state has a corresponding value of 4). Since the process
was successful in determining a terminal state very early, new states are generated
by considering at first their N i sets. If the N i sets have a size greater or equal to 3,
then they are fathomed.

This is the reason why their Pi sets do not need to be considered. For this

INFERENCE OF A BOOLEAN FUNCTION FROM EXAMPLES 79

[{ }, { } l I

/ ~ " ~ [{:.O .P:4}AI r{e~2 dY,4C~li6i}dle red STO P: Rule #2
/ _ 1 1 - - m . 2 . 3 : } . {2.3.,.5~j STOP: Rule #2

~ [{ 1 , 2 . 3 , 4 } , {2,4,5}] STOP: terminal state tt
.[{1,2,4}, {2,4.5}] ~ �9 STOP: Rule #2 (tlzis is also an optimal state)

tA, ~ S T O P : Rule #2
/ ~ S T O P : Rule #2

STOP: Because~ was considered

[~ STOP: Already considered
[~.~$TOP: Already considered
/ / / / I ~ ' X X , {2,3,6}] STOP: Rule #2
/ ~ ~ [XXX, {2,3,4,6_}] STOP: Rule #2

/ [A { : ,2 } , { 3 , 6 } 1 ~ = ~ _ ~ ~ . . ~ O ; : INN~GG((~,)I >3 3

STOP: I NEO(A~) I > 3

/,..~FSTOP: I NEG(7,,) I > 3
/ / / [X X X . {2,3,6}1 STOP: Rule#2
/ / / ~ , . , , . . , . , . , , ~ S TO P: Already idered
t ~ . - . . " " ' ~ ~ [X X X , {2,3,4}1 - STOP: Rule#2

j{3,4}, { 2 , 3 } 1 ~ t_STOP: [NEO(Aa) I > 3

STOP: [NEG(As) I > 3

~..e "STOP: I NEG(X,) I > 3
~ , . . , , , ~STOP : Already considered

~ ~ , s ~ T O P: Already idered

[_{1,3,, { 2 , 4 , , ~ ~ ' ~ O P P : Already considered

A, ~ S T O P : I .Eo(X,) I z 3
I NEG(A,) I > 3

~ --STOP [NEG(A2) I _> 3
STOp:- I .Eo(A,) t _> 3

L ~ [{1,2}, {1,4,5,6}1 STOP: Rule #2

AI9 4 STOP: Rule #2
~ N N ~ [{-' }' {1'3'5'6}] A2

[{3,4}, {1,2,4,5}] STOP: Rule #2
\A,

[{3}, 11,3,6}1 STOP: Rule#2

Fig. 3. The searc[1 tree under the New Branch-and-Bound approach.

reason they are indicated with the symbol X X X in Figure 3. It is interesting to
observe that any arc A k for which the size of the N E G (A k) set is greater or equal
to 3 necessarily leads to an absorbed state. Therefore, all states derived by such
arcs are fathomed. N o w consider the state [{1, 2}, {3, 6}]. This state was created
by applying the atom A 2 on the root state. If we apply the negation of A 2 (i .e . ,
-42) on any of its descendent states, then the new state would have both the atoms
A 2 and -42. However , if that happens then that state would accept all the
negative (and positive) examples. This is the reason why the seventh child state of

80 EVANGELOS TRIANTAPHYLLOU

[(1,2}, (3,6}] is fathomed in the B & B search. In this illustrative example
Theorem 1 was never utilized.

In Figure 3 only the arcs of the first level bear the indication of the appropriate
atom. Arcs in the second level bear no indication of atom because of space
limitations in this figure. However, the atoms in the order 4 3 , A2, A4, 41, 4 4 ,
A1, 4 2 , A3 are assumed on these arcs as well. Since the state
[(1,2, 3, 4}, {2,4,5}] is the only unfathomed terminal state, this is also an
optimal state. Therefore, the derived CNF clause is (4 3 v A1). This clause
accepts all the positive examples and also accepts the negative examples {2, 4, 5}
(that is, it rejects the negative examples {1, 3, 6}).

From the previous considerations it follows that there is a great advantage to
reach terminal nodes early in the search process. In this way, the minimum size of
their N~ sets can be used to effectively fathom search states. This situation
suggests the application of the B & B search in two phases (as was the case with
the original B & B search). During the first phase only a very small number (say,
10) of active states is allowed. If there are more than 10 active states, then they
are ranked according to their Pi and N~ sizes (i.e., in a manner similar to ranking
the atoms). In this way, the states with the highest potential of being optimal are
kept into memory. This is the principle of beam search in artificial intelligence
(see, for instance, [8]). At the end of phase one, a terminal state of small
cardinality becomes available. Next, phase two is initiated. During the second
phase a larger number (say, 50) of active states is allowed. However, states now
can be fathomed more frequently because the size of a small N~ set of a terminal
state is known. Also note that the new B & B search does not have to follow a
fixed number of stages (as was the case with the original B & B search).

An important issue with the previous two phases is to be able to decide when a
terminal state is optimal (in the OCAT sense). As it was mentioned above,
memory limitations may force the search to drop states which are not absorbed by
any other state. Therefore, there is a possibility to drop a state which could have
lead to an optimal state (and thus to an optimal clause).

Suppose that L non-absorbed states had to be dropped because o f memory
limitations. Let K 1 , K 2 , K 3 , K L represent the cardinalities of their corre-
sponding N i sets. Next, define the quantity KMI N as the minimum of the previous
L numbers. Similarly, suppose that the B & B process has identified N terminal
states. Let Y1, Y2, Y3,. �9 �9 YN represent the cardinalities of their corresponding
N~ sets. Define as YMIN the minimum of the previous N cardinalities. Then, the
previous considerations lead to the proof of the following theorem which states a
condition for establishing optimality.

T H E O R E M 4. A terminal state S i --[Pi, Ni] is also an optimal state i f the
following two conditions are true:

IN/[= YMIN and KMI N >! YMtN"

INFERENCE OF A BOOLEAN FUNCTION FROM EXAMPLES 81

Note that this theorem can be applied after each one of the two phases.
Obviously, if it is applicable after the first phase, then the second phase does not
need to be initiated. The following lemma states a fact when optimality is not
provable.

L E M M A 1. Suppose that the following relation is true: KM~ N < YMIN" Then, an
optimal clause accepts no less than KM~ N negative examples.

This lemma indicates that if optimality cannot be proven, then it is still possible to
establish a lower limit on the number of negative examples which can be accepted
by an optimal clause (or, equivalently, an upper limit on the number of negative
examples which can be rejected by an optimal clause).

Finally, it should be stated here that the CNF version of the B & B algorithm
was implemented in FORTRAN and used in the computational experiments
described in a following section. The next sub-section briefly describes a
modification of this B & B approach which can derive DNF systems.

3.2. GENERATING A DNF CLAUSE

The previously described B & B search can be easily modified to generate DNF
clauses. Recall that the requirements now are as follows. Every positive example
should be accepted by at least one of the conjunctions (single DNF clause). Also,
every negative example should be rejected by all the conjunctions. Therefore, the
DNF clause proposed by the B & B approach during a single OCAT iteration
should reject all the negative examples and accept as many positive examples as
possible.

The search states are defined in a manner analogous to that of the CNF case.
Each state is described in terms of two sets. The first set (denoted by Pi) refers to
the positive examples which are accepted by the atoms which correspond to the
arcs which connect that state (node) with the root node. Similarly, the second set
(denoted by Ni) refers to the negative examples which are accepted by the atoms
which correspond to the arcs which connect that state with the root node.
Suppose that we are at state S i = [Pi, N~]. Now assume that the search considers
the state (node) which is derived by following the arch which corresponds to the
atom A k . Then, the new state is: Sj = [Pj., Nj], where the new sets Pj and Nj are
defined as follows:

Pj = Pi VI POS(Ak), and

Nj = N,. N NEG(Ak) .

In other words, instead of set union now there is set intersection. A state
Si = [P~, N~] is a terminal state if and only if the set N~ is equal to the empty set.
That is, a state is terminal if it rejects all the negative examples. A terminal state
with the maximum cardinality of the set Pi is optimal (in the OCAT sense).

82 EVANGELOS TRIANTAPHYLLOU

The concept of absorbed states is the same as in the CNF case. However , in the
light of the previous definitions Theorem 3 takes the following form:

T H E O R E M 5. Suppose that S i = [Pi, Ni] is a terminal state. Then, any state

Sj = [Pj, Nj], such that [Pjl <<- IPit, is absorbed by the state S i .

The atoms in the arcs now are ranked in an analogous manner as in the previous
sub-section. The first criterion is to rank the atoms in ascending (instead of
descending) order of the size of the corresponding NEG(Ak) set. If there is a tie,
then they are ranked in descending (instead of ascending) order in terms of the
size of corresponding POS(Ak) set.

As was the case with the CNF version of the B & B algorithm, suppose that L
non-absorbed states had to be dropped because of memory limitations. Let K 1 ,
K2, K 3 , K L represent the cardinalities of their corresponding Pi sets (note
that before we considered the N i sets). Next, define the quantity KMA x as the
m a x i m u m of the previous L numbers (before we Considered the minimum
values). Similarly, suppose that the B & B process has identified N terminal
states. Let Y1, Y2, YB,. �9 �9 YN represent the cardinalities of their corresponding
Pe sets. Define as YMAX the m a x i m u m of the previous N cardinalities. Then, the
previous considerations lead to the proof of a theorem, analogous to Theorem 4,
regarding the establishment of optimality.

T H E O R E M 6. A terminal state S i = [Pi , Ni] is also an optimal state i f the

fo l lowing condit ions are true:

IPil = Y~AX and KMA x ~< YMAX"

The following section briefly describes a modification of the original SAT method.
As it was described in Section 2.3, the original SAT method derives DNF
systems. The modified version derives CNF systems. After that development both
the O C A T with the B & B algorithm and the SAT approach can derive CNF or
DNF systems.

4. An SAT Approach for Inferring CNF Clauses

The SAT formulation for deriving CNF systems is based on the original SAT
formulation for deriving DNF systems (as described in Section 2.3). The variables
used in the new formulation are similar to the ones used in the DNF case. They
are defined as follows:

I N F E R E N C E OF A B O O L E A N F U N C T I O N F R O M E X A M P L E S 83

if
s/~ = if

' {01 if
s~ = if

{1
Z j = O,

The clauses of this
disjunctions are as

t
S j i V S j i , i

k

V z j , /3=1 , M 2
j=a

-~ i = l , . , n , O' j i V Z j ~ . �9

Ai is in the j-th disjunction
A~ is not in the j-th disjunction

41 is in the j-th disjunction

Ai is not in the j-th disjunction

if A i = 1 in the negative example /3 E E -

if A~ = 0 in the negative example /3 ~ E -

if the negative example/3 is accepted by the j-th disjunction
otherwise.

SAT formulation for deriving a CNF system which has up to k
follows (where n is the number of atoms):

=1 , n , j = l , . . . , k (1)

(v) @ , j = l , . . . , k , r = l , . . . , M a (2)
l �9

(3)

j = l , . . . , k , / 3 = l , . . . , M 2, (4)

where Pr is the set of indices of A for which A i = 1 in the positive example
r E E +. Similarly, /5 r is the set of indices of A for which Ai = 0 in the positive
example r E E +.

Clauses of type (1) ensure that never both A i and .A~ will appear in any
disjunction at the same time. Clauses of type (2) ensure that each positive
example will be accepted by all k disjunctions. Clauses of type (3) ensure that
each negative example will be rejected by at least one of the k disjunctions.

-~ = 1 if and only if the negative example Finally, clauses of type (4) ensure that z j
/3 is rejected by the j-th conjunction. In general, this SAT problem has k(n(M 2 +

1) + Ma) + M 2 clauses, and k(2n + M2) Boolean variables.

5. The Rejectability Graph of Two Collections of Examples

This section presents the motivation and definition of a special graph, called the
rejectability graph, which can be easily derived from positive and negative
examples. The concept of this graph was first introduced in [25]. This graph can
be used to establish a lower limit on the number of clauses which can be derived
from positive and negative examples. When this lower limit is equal to the number
of clauses derived by OCAT, then the conclusion is that O C A T derived a system

with the min imum number o f clauses.

84 EVANGELOS TRIANTAPHYLLOU

To understand the motivation for introducing this graph consider a situation
with t = 5 atoms. Suppose that the vector v 1 = (1, 0, 1, 0, 1) is a positive example
while the two vectors v 2 = (1, 0, 1, 1, 1) and v 3 = (1, 1, 1, 0, 1) are negative
examples. Recall that ATOMS(v) denotes the set of the atoms which are true in a
particular (either positive or negative) example v (where v E {1, 0,} t, and t is the
number of atoms). Now observe that there is no single CNF clause which can
simultaneously reject both the two negative examples v 2 and v3, while at the same
time accept the positive example v a .

This is true because any clause which simultaneously rejects the two examples
v 2 and v3, should not contain any of the atoms in the union of the two sets
ATOMS(v2) and ATOMS(v3). But if none of the atoms of the set
{AI , A2, A2, A3, A4, A4, As} = ATOMS(v2) tO ATOMS(v3) is present in the
clause, then it is impossible to accept the positive example v 1 = (1, 0, 1, 0, 1).
Therefore, given any clause which accepts the positive example v a , the previous
two negative examples v 2 and v 3 cannot also be rejected by this clause. In general,
given a set of positive examples E +, then two negative examples o r and v 2 are
rejectable by a single clause if and only if the condition in the following theorem
is satisfied:

T H E O R E M 7 [25]. Let E + be a set of positive examples and vl , v 2 be two
negative examples. There exists a clause which accepts all the positive examples and
rejects both negative examples v 1 and v 2 if and only if:

ATOMS(vi) ~_ATOMS(vl) tO ATOMS(v2), for each positive example

v i E E + .

The above theorem follows directly from the previous considerations. Given two
collections of positive and negative examples, denoted as E + and E - , respective-
ly, Theorem 7 motivates the construction of a graph G = (V, E) as follows:

v = v2, v3 , vM2)

where M 2 is the size of the E - set ,

E = {(V/, Vj) if and only if the i-th and the j-th examples in E - are

rejectable by a single clause (subject to the examples in E+)} .

We denote this graph as the rejectability graph of E § and E - . The previous
theorem indicates that it is computationally straightforward to construct this
graph. If there are M 2 negative examples, then the maximum number of edges is
m 2 (m 2 - 1)/2. Therefore, the rejectability graph can be constructed by perform-
ing Mz(M 2 - 1) / 2 simple rejectability examinations. The rejectability graph G of
a set of positive and a set of negative examples possesses a number of interesting
properties (for more details see [25]). The following theorem refers to any clique
of the rejectability graph.

INFERENCE OF A BOOLEAN FUNCTION FROM EXAMPLES 85

THEOREM 8 [25]. Suppose that the two sets E § and E - are given and ~ is a
subset of k negative examples from E - (k <<- size of set E -) with the property that
the subset can be rejected by a single CNF clause which also accepts each of the
positive examples in E § Then, the vertices corresponding to the k negative
examples in the rejectability graph G form a clique of size k.

The previous theorem states that any set of negative examples which can be
rejected by a single clause corresponds to a clique in the rejectability graph.
However, the converse is not true. That is, not every clique in the rejectability
graph corresponds to a set of negative examples which can be rejected by a single
clause. Let G be the complement of the rejectability graph G of the two sets of
examples. At this point let w(G) be the size of the maximum clique of the graph
G. Then, the following theorem states a lower bound on the minimum number of
clauses which can reject all the negative examples in E - , while accepting all the
positive examples in E §

THEOREM 9 [25]. Suppose that E + and E - are the sets of the positive and
negative examples, respectively. Let r be the minimum number of clauses which
reject all the examples in E - , while accepting all the examples in E § Then, the
following relation is true:

r>~w(G) .

As an illustrative example, consider the E + and E - examples given in the
introduction section. The corresponding rejectability graph and its complemented
graph are depicted in Figure 4. The size of the maximum clique of the
complemented graph is 3. Thus, a lower limit on the number of clauses is 3. Since

The Rejectability Graph

V~

The Complemented Graph

Fig. 4. The rejectability and its complemented graph of E + and E-.

86 E V A N G E L O S T R I A N T A P H Y L L O U

the OCAT approach yields 3 clauses for these data, and 3 is a lower bound, then
we can conclude that for this case OCAT derived a minimum size system.

6. Some Computat ional Results

Several computational experiments were conducted in order to gain a better
understanding of the performance of the new branch-and-bound approach. These
experiments were conducted in a manner similar to the experiments reported in
[15]. At first, a system was chosen to be the "hidden logic". This system is hidden
in the sense that we try to infer it from limited collections of positive and negative
examples. The systems used as "hidden logic" are exactly the same as the ones
also used in [15]. These are the 15 systems depicted in Table III.

Once a "hidden logic" is selected, a number of random examples was
generated. Each random example was classified according to the "hidden logic"

Table III. Description of the systems used as "hidden logic" in the computer experiments

8A (A 4 v 4 7) A (4 5 v A ,) 16D (4 5 V 4 8 V A_10 V A16) A
A (A , v A 2 v 46) (2~ 2 v "412 v A16) A

(.1~ v . i ,~) ^
(A~v4~vA,)

8B (41 V 4 4 V A6) A (A2) 16E (A~ v 4 2 v A 3 v 4 ,) A
A (4 2 v A 8) (As v A6 v L7 v As_) A

(A 9 v 41o v A~I v A12) A
(413 V A14 v 415 v AI~)

8C

8D

(As) A (A 6 V illS) A (A7) 32A

(46) A (/~2) A (43 V -i7) 32B

8E (As) A (A 2 v As) A 32C
(fii 3 v As)

16A (A 1 V 412) A (A 2 V A 3 V As) 32D
^(Ag) A(47)

16B (_-43 v A ~ v A!s) v (_4 3 v 32E
A l l) A (A 2 v Axo v A16)
A (A1 v A2)

16C (A 4 v 4 7 v A1,) A (A 4 v A10
v A14) A (4 9 v z414 V Als)
A (4 3 v As)

A V 412) A
(A~ v 4~ v A~) ^
(A~ v ~ v A~6)

(A 1 v A 2 v 4 9 v 412 v Aal) A

(A . v 4 ~ v A~,) ^
(A 2 V 4 5 v 420 v A32)

(.42 v 4 9 v fi*~2 v A31) A
(A 2 v d2o v A32) A
(A 1 v A 2 V A19 V zZ~23 V A26)

(A 4 v A n v 422) A
(A z V A12 V 41s V z~29) A
(43 v A 9 v A2_o) ~3
(410 v Al l v m:z 9 v A32)

(A 9 v Alo v A23) A
(A~ v A~9 v fi~) ^
(A 2 v 4 4 v A 6 V 4 7 V A19 V 432)

INFERENCE OF A BOOLEAN FUNCTION FROM EXAMPLES 87

as either positive or negative. The random examples used in these experiments
are identical with the ones used in [15]. After the collections of the E + and E -
examples were generated this way, the OCAT approach with the CNF version of
the new B & B algorithm were applied. In order to derive a DNF system, the
main result in [24] was applied.

To see how this can be accomplished let v be an example (either positive or
negative). Then, 6 is defined as the complement of example v. For instance, if
v = (1, 0, 0), then t7 = (0, 1, 1). The following definition introduces the concept of
the complement of a set of examples. Let E be a collection of examples (either
positive or negative). Then, /~ is defined as the complement of the collection E.
Recall that in the first section the general form of a CNF and DNF system was
defined as (I) and (II), respectively.

V ai
j=a icoj

and

/ = 1 i j

where a i is either A i o r Ai. Then, the following theorem states an important
property which exists when CNF and DNF systems are inferred from collections
of positive and negative examples.

T H E O R E M 10 [24]. Let E + and E - be the sets of positive and negative examples,
respectively. A CNF system given as (I) satisfies the constraints of the E + and E -
sets if and only if the DNF system given as (II) satisfies the constraints of E -
(considered as the positive examples) and E + (considered as the negative exam-
ples).

Furthermore, in these experiments the rejectability graph and the maximum
clique of its complemented graph were determined as well. For the maximum
clique the computer code reported in [6] was used. Then Theorem 9 was used to
establish the lower limit reported in Table IV.

When a system was inferred, it was compared in terms of 10,000 random
examples with the "hidden logic". That is, 10,000 random examples were
generated and then they were classified according to these two systems. The
percentage of the times the two systems agreed, was reported as the accuracy of
the inferred system. For the case of the systems which were defined on 8 atoms
(i.e., systems 8A1, 8A2, 8 A 3 , . . . , 8E2), all possible 256 examples were consid-
ered. The active list in the B & B search contained up to 10 search states at any
time. However, this restriction did not prevent the search from reaching optimal

88 EVANGELOS TRIANTAPHYLLOU

Table IV. Solution statistics

Problem [SAT Solution Characteristics]
Chatactctisties

OCAT Solution Charactedsties

+1 Noo k I hc++lA N~176 A ,J c+t+ ID Examples value Clauses Clauses limit comparison
with SAT

8AI I0 3 3 0.42 0.86 3 2 0.004 0.81 105
8A2 25 6 3 21.37 0.87 3 2 0.004 0.86 5,343
8A3 50 6 3 29.77 0.92 3 3 0.007 0.92 4,253
8A4 100 6 3 9.33 1 .DO 3 3 0.015 1,00 622

8BI 50 3 2 2.05 0.97 2 2 0.002 0.97 1,02.5
8B2 I00 6 3 97.07 0.97 3 3 0.006 0.99 16,178
8B3 150 10 3 167.07 0.96 3 3 0.007 0.96 23,867
8B4 200 6 3 122.62 1 .DO 3 3 0.009 0.97 13,624

8CI 50 10 2 8.02 0.94 2 2 0.002 0.94 4,010
8C2 IDO 10 3 84.80 1.00 3 3 0.005 0.94 16,960

8DI 50 10 3 116.98 0.94 3 3 0.004 1.00 29,245
8D2 1DO 10 3 45.80 1 .DO 3 3 0.006 1 .DO 7,620

8El 50 10 3 122.82 1.00 3 3 0.DO5 1 .DO 24,564
8E2 100 10 3 16.68 1 .DO 3 3 0.007 1 .DO 2,383

16A1 1DO 15 4 2,038.55 1.DO 4 3 0.065 1.DO 31,362
16A2 300 6 4 607.80 1.00 4 4 O. 134 1 .DO 4,536

16BI 200 8 5 78.27 0.99 4 4 0.402 1.DO 195
16B2 400 4 4 236.07 1.00 4 4 0.284 I .DO 831

16C1 1DO 20 5 757.55 0.87 4 4 01314 1.00 2,413
16C2 400 4 4 520.60 1.DO 4 4 0.477 1.00 1,091

16D1 200 10 4 1,546.78 1.00 4 4 0.089 1.00 17,380
16D2 400 4 4 544.25 1.00 4 4 0.105 1.00 5,183

16El 200 15 5 2,156.42 0.99 5 4 1.545 1.DO 1,396
16E2 400 4 4 375.83 1.DO 4 4 2.531 1.00 149

32A1 250 3 3 176.73 1.00 3 3 0.134 1.DO 1,319

32B1 50 3 3 5.02 0.83 2 1 0.044 0.93 114
32B2 100 3 3 56.65 0.96 3 2 O. 058 0.96 977
32B3 250 3 3 189.80 0.97 3 2 0.143 0.97 1,327
32B4 300 3 3 259.43 1.00 3 2 0.198 0.99 1,310

32C1 50 3 3 23.85 0.80 2 1 0.019 0.92 1,255
32C2 100 3 3 9.38 0.g8 2 1 0.020 0.91 469
32C3 150 3 3 14.27 0.92 3 1 1.969 0.91 7
32C4 1DO0 3 3 154.62 I .DO 3 3 0.654 1 .DO 236

32D1 50 4 4 65.65 0.74 3 1 0.197 0.81 333
32D2 1DO 4 4 178.10 0.91 3 2 0.308 0.92 578
32D3 400 4 4 1,227.40 1.DO 4 2 1.103 1.DO 1,113

32E1 50 3 2 8 . 3 3 , 0.86 2 1 0.015 0.83 555
32E2 1DO 3 3 9.67 0.97 2 1 0.096 0.99 101
32E3 200 3 3 132.83 0.98 3 2 0.105 0.98 1,265
32E4 300 3 3 276,93 0.98 3 2 0.209 0.99 1,325
32E5 400 3 3 390.22 0.98 3 2 O, 184 0.98 2,121

solutions in any OCAT iteration. It should be stated here that only one phase was
enough to derive an optimal clause.

The computational results are reported in Table IV. The same table also depicts
the results derived by using the SAT approach. The SAT results were derived by
using a VAX 8700 running 10th Edition UNIX. The code for the SAT tests was
written in F O R T R A N and in C. The SAT results were originally reported in [15].

I N F E R E N C E OF A B O O L E A N F U N C T I O N F R O M E X A M P L E S 89

The OCAT results were derived by using an IBM 3090-600S computer and the
code was written in FORTRAN. As it can be seen from this table the OCAT
approach outperformed the SAT approach in an order of many times. If we
exclude the case of the test with ID 32C3, then for all the other cases OCAT was
101 to 31,362 times faster than the SAT approach. On the average, OCAT was
5,579 times faster.

Observe at this point that a direct comparison would have required the SAT
results to be generated either in FORTRAN or in C (not both) and the OCAT
approach on the same (single) language as the SAT approach. However, this is
impractical and it seems that one has to compromise in comparing the two codes.
Thus, the current results can convey only a flavor on the relative performance of
the two methods, and by no means should be considered as a direct comparison of
the two approaches.

In terms of the accuracy index, both the SAT and OCAT approaches
performed considerably well. It should also be stated here that when the lower
limit is equal to the number of clauses derived by OCAT, then we can conclude
that OCAT derived a minimum size (in terms of the number of clauses) system.
Note that this situation occurred in these experiments 51.2% of the time.
However, if the lower limit is less than the number of clauses, then this does not
necessarily imply that OCAT failed to derive a minimum size system.

Recall, that if optimality (i.e., the minimum number of inferred clauses) is not
proven in the OCAT case, then the SAT approach can be applied with
successively decreasing k values. When an infeasible SAT problem is reached, the
conclusion is that the last feasible SAT solution yielded an optimal system. Finally,
it is interesting to emphasize here that in these computational experiments it was
found that, most of the time, OCAT derived a minimum size system. Therefore, it
is anticipated that under the proposed strategy the SAT approach (which is very
CPU time consuming) does not have to be used very often. Optimality (i.e., the
minimum number of clauses) can be checked by comparing the number of clauses
derived by OCAT with the lower limit established in Theorem 9.

Table V presents the results of solving some large problems. In these tests the
number of atoms is 32, the total number of examples is equal to 1,000, and each
"hidden logic" was assumed to have 30 clauses. The strategy followed in these

Table V. Solution statistics of some large test problems (number of atoms = 32)

Problem Characteristics OCAT Solution Characteristics

Problem ID No. of Total No. I E +[I E-I CPU No. of Lower Accuracy
Clauses of Examples Time Clauses Limit

32H1 30 1,000 943 57 135.71 17 3 84.13%
32H2 30 1,000 820 180 45.18 10 3 93.83%
32H3 30 1,000 918 18 175.50 7 2 95.85%
32H4 30 1,000 944 56 64.16 20 2 82.84%
32H5 30 1,000 988 12 13.41 5 2 97.83%

T
ab

le
 V

I.

D
es

cr
ip

ti
on

s
o

f
th

e
sy

st
em

s
in

 t
h

e
fi

rs
t

te
st

 p
ro

b
le

m
 (

3
2

H
1

)

Th
e

"H
id

de
n

L
og

ic
"

,S
ys

te
m

C
L

A
U

S
E

:
1

=

2
6

11

14

16

21

25

27

-1
0

-1

3

-1
7

-1

8

-2
9

C

L
A

U
S

E
:

2
=

 1
5

17

19

26

31

-4

-8

-2
0

C

L
A

U
S

E
:

3
=

2
4

2

5

-1

-1
0

-1

7

-1
8

-2

0

-2
6

C

L
A

U
S

E
:

4
=

1

9
11

17

32

-1

0

-1
5

-1

6

-2
1

-2

2

C
L

A
U

S
E

:
5

=

4
8

14

15

17

18

24

32

-1
1

-1

6

-2
1

-2

2

-2
8

C

L
A

U
S

E
:

6
=

9

10

12

16

19

-4

-5

-8

-1
4

-2

5

-3
0

-3

1

C
L

A
U

S
E

:
7

=

1
12

-8

-9

-1

1

-1
3

-1

5

-1
7

-2

6

-2
7

-2

8

-3
1

C

L
A

U
S

E
:

8
=

1

12

17

26

-2

-5

-8

-2
0

-2

2

-2
4

-2

8

-3
1

C

L
A

U
S

E
:

9
=

1

9
17

26

-2

-4

-6

-8

C

L
A

U
S

E
:

1
0

=

5
7

19

-2

-1
2

-1

7

-1
8

-2

0

-2
3

-2

6

-2
8

C

L
A

U
S

E
:

1
1

=
2

0

25

31

32

-2

-3

-8

-1
2

-1

3

-1
5

-2

2

-2
8

C

L
A

U
S

E
:

12
 =

 1
3

25

-6

-1
9

-3

0

-3
2

C

L
A

U
S

E
:

13
 =

 1
1

19

21

23

24

27

31

-4

-8

-9

-1
2

-1

3

-1
5

C

L
A

U
S

E
:

1
4

=

5
8

20

21

2
3

-2

-9

-1

6

C
L

A
U

S
E

:
1

5
=

3

4
13

16

-6

-1

0

-1
2

-2

6

-2
8

-2

9

-3
1

C

L
A

U
S

E
:

1
6

=

4
17

19

24

26

32

-1

-5

-1

0

-1
3

-1

8

-2
1

-2

8

C
L

A
U

S
E

:
17

 =
 1

4
25

28

-1

1

-1
2

-1

7

-2
2

-2

9

C
L

A
U

S
E

:
1

8
=

2

3
7

11

23

24

27

31

32

-5

-8

-1
2

-1

4

C
L

A
U

S
E

:
19

 =

2
12

22

29

-8

-1

8

-2
7

-3

0

-3
1

C

L
A

U
S

E
:

2
0

=

3
17

25

-4

-6

-2

4

-2
6

-3

0

]
C

L
A

U
S

E
:

2
1

=

8
9

12

22

25

-3

-1
8

-2

4

-2
6

-2

9

]
C

L
A

U
S

E
:

2
2

=

1
2

8
9

10

11

22

24

27

32

-3

-7

-1
4

C

L
A

U
S

E
:

23
 =

 1
5

18

21

23

-2

-1
7

C

L
A

U
S

E
:

24
 =

 1
0

13

16

17

18

-2
3

-2

6

-2
7

C

L
A

U
S

E
:

25
 =

3

6
16

19

20

21

25

-1

-1

2

-1
4

-1

5

-1
8

-2

3

C
L

A
U

S
E

:
2

6
=

1

2
8

9
13

20

27

28

-5

-1

6

-2
3

-2

5

-2
6

C

L
A

U
S

E
:

27
 =

5

7
15

19

25

28

-6

-8

--

10

-1
1

C

L
A

U
S

E
:

28
 =

1

8
9

11

15

20

21

22

29

-1
3

-2

4

-2
8

-3

1

C
L

A
U

S
E

:
29

 =

1
5

9
15

25

29

-1

3

-2
6

-3

2

C
L

A
U

S
E

:
30

 =
 1

7
18

22

23

30

32

-6

-8

-9

-1

0

-1
2

-2

4

-2
7

-2
6

-2
6

-1
6

-2
6

-3
2

-2
9

-2
8

-2
9

-2
9

-3
2

-3
1

-3
0

Z

�9

f.g
]

),

�9

Th
e

In
fe

rr
ed

 S
ys

te
m

C
L

A
U

S
E

:
1

=
 1

3
15

25

C

L
A

U
S

E
:

2
=

 1
5

18

20

C
L

A
U

S
E

:
3

=
 1

5
18

21

C

L
A

U
S

E
:

4
=

5

14

15

C
L

A
U

S
E

:
5

=

5
17

21

C

L
A

U
S

E
:

6
=

 1
8

25

29

C
L

A
U

S
E

:
7

=
 1

5
18

21

C

L
A

U
S

E
:

8
=

1

9
17

C

L
A

U
S

E
:

9
=

2

5
11

C

L
A

U
S

E
:

1
0

=

3
11

12

C

L
A

U
S

E
:

11
 =

3

12

15

C
L

A
U

S
E

:
12

 =
 1

0
12

25

C

L
A

U
S

E
:

13
 =

3

7
11

C

L
A

U
S

E
:

1
4

=

3
5

6
C

L
A

U
S

E
:

15
 =

 1
0

16

21

C
L

A
U

S
E

:
16

 =

7
16

30

C

L
A

U
S

E
:

17
 =

 1
2

25

-1
9

-6

21

23

21

25

-6

23

-2

15

17

17

-1
4

14

15

23

-9

-1
9

23

25

25

-2

-8

-2

-4

17

22

29

-2

3

15

24

31

-1
3

-3
0

25

-2

-1

-4

-1

9

-9

-6

29

25

-4

-2
4

17

25

-4

-1

5

-3
2

-2

-4

-2

-6

-3

0

-2
8

-8

-2

3

29

_
8

~

-2
6

18

27

-8

-1

7

-3
2

-1

7

-8

-2
8

-3

2

-2
7

-2

6

-4

-1
3

-2

8

25

-4

-1
4

-2

6

-3
0

-1

0

-3
0

-2
7

-8

-1

8

-3
2

28

13

-2

0

-2
8

-2
8

-3

2

-2
8

-2

8

-2
0

-8

-1
8

-2

8

-2
9

-3
2

-3
2

-3
2

-2
0

-2

6

rn

~Z

O

O

O

Z

:Z

7~

�9

X

t-
"

92 E V A N G E L O S T R I A N T A P H Y L L O U

experiments is the same as in the previous tests. The numbers of positive and
negative examples are shown as well. Table VI presents the exact structure of the
"hidden" and inferred systems of the first of these test problems (i.e., problem
32H1). In Table IV only the indexes of the atoms are depicted (in order to save
space). For instance, the first clause of the inferred system is represented by the
list [13, 15, 25, - 6 , -19, -30, -32] which implies the CNF clause:

(A13 v A15 v A25 v ~t 6 v ~119 v ~130 v ~132) .

Observe that now the CPU times are considerably (with the OCAT standards)
higher. However, relatively speaking these times are still kept in low levels. The
lower limit, however, is not tight enough. Furthermore, determining the maxi-
mum clique of the complemented rejectability graph took considerably more time
than determining the infrared system. It should also be stated here that the
"hidden" systems were not defined in terms of a minimum representation. That
is, it might be possible to represent an equivalent system with less than 30 clauses.
The OCAT approach always returned, compared to the original "hidden" system,
a very compact system.

Finally, the accuracy of the inferred system was rather high. The size of the
population of all possible examples is 232 = 4.29496 x 109. Out of these examples,
the tests considered only 1,000 random inputs. This represents a very small
sample of the actual population and, therefore, the corresponding accuracy values
can be considered rather high. The computational results in Tables II and V
suggest that the OCAT approach, when it is combined with the new branch-and-
bound algorithm, constitutes an efficient and effective strategy for inferring a
logical system from examples.

7. Conclusions

The results of the computational experiments suggest that the proposed OCAT
approach, when it is combined with the new branch-and-bound algorithm,
provides a very efficient way for inferring logical clauses from positive and
negative examples. It is interesting to observe that OCAT also derived systems
for which very often it could be proved (by using the idea o f the rejectability
graph) to be of minimum size. Furthermore, the OCAT and the SAT approaches
can be combined into a single strategy in order to efficiently derive a minimum
size CNF and DNF system.

The high CPU time efficiency and effectiveness of the proposed method make it
to be a practical method for inferring clauses from examples. Future work can
focus on inferring Horn clauses (and not just general CNF or DNF systems as is
the case currently). Another interesting expansion of this work is to apply these
concepts on partially defined examples. That is, examples now are not defined in

I N F E R E N C E OF A B O O L E A N F U N C T I O N F R O M E X A M P L E S 93

the domain (0, 1} t, but instead in the domain {0, 1, ,)t where * indicates
unknown value.

The problem of learning rules from past experience is the keystone in building
truly intelligent systems. Furthermore, more efficient decomposition approaches
are required in order to make learning feasible for large scale applications. More
research in this area has the potential of making more contributions in this vital
area of artificial intelligence and operations research.

Acknowledgements

The author would like to thank Professor P. M. Pardalos from the University of
Florida for providing him with the clique code used in the computational
experiments. He would also like to thank Dr. M. G. C. Resende from AT & T for
providing him with the data used in deriving the computational results presented
in Table IV.

References

1. Angluin, D. and C. H. Smith (1983), Inductive Inference: Theory and Methods, Computing
Surveys 15, 237-265.

2. Bongard, M. (1970), Pattern Recognition, Spartan Books, New York, NY.
3. Brayton, R. K., G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-Vincentelli (1985), Logic

Minimization Algorithms for VLS1 Minimization, Kluwer Academic Publishers, Dordrecht.
4. Blair, C. E., R. G. Jersolow, and J. K. Lowe (1985), Some Results and Experiments in

Programming Techniques for Propositional Logic, Computers and Operations Research 13,
633-645.

5. Carbonell, J. G., R. S. Michalski, and T. M. Mitchell (1983), An Overview of Machine Learning
from Examples, R. S. Michalski, J. G. Carbonell, and T. M. Mitchell (eds.), Machine Learning:
An Artificial Intelligence Approach, Tioga Publishing Company, Palo Alto, CA, 3-23.

6. Carraghan, R. and P. M. Pardalos (1990), An Exact Algorithm for the Maximum Clique Problem,
Operations Research Letters 9(11), 375-382.

7. Cavalier, T. M., P. M. Pardalos, and A. L. Soyster (1990), Modeling and Integer Programming
Techniques Applied to Propositional Calculus, J. P. Ignizi0 (ed.), Computers and Operations
Research 17(6), 561-570.

8. Dietterich, T. C. and R. S. Michalski (1983), A Comparative Review of Selected Methods for
Learning from Examples, R. S. Michalski, J. G. Carbonell, and T. M. Mitchell (eds.), Machine
Learning: An Artificial Intelligence Approach, Tioga Publishing Company, Palo Alto, CA, 41-81.

9. Gimel, J. F. (1965), A Method of Producing a Boolen Function Having an Arbitrarily Prescribed
Prime Implicant Table, IEEE Trans. Computers 14, 485-488.

10. Hooker, J. N. (1988a), Generalized Resolution and Cutting Planes, R. G. Jeroslow (ed.), Annals
of Operations Research 12(1-4), 217-239.

11. Hooker, J. N. (1988b), A Quantitative Approach to Logical Inference, Decision Support Systems,
North-Holland, 4, 45-69.

12. Jeroslow, R. G. (1988), Computation-Oriented Reductions of Predicate to Prepositional Logic,
Decision Support Systems, North-Holland, 4, 183-197.

13. Jeroslow, R. G. (1989), Logic-Based Decision Support, North-Holland, Amsterdam.
14. Kamath, A. P., N. K. Karmakar, K. G. Ramakrishnan, and M. G. C. Resende (1990),

Computational Experience with an Interior Point Algorithm on the Satisfiability Problem, Annals

94 EVANGELOS TRIANTAPHYLLOU

of Operations Research, P. M. Pardalos and J. B. Rosen (eds.), Special issue on: Computational
Methods in Global Optimization, 25, 43-58.

15. Kamath, A. P., N. K. Karmakar, K. G. Ramakrishnan, and M. G. C. Resende (1992), A
Continuous Approach to Inductive Inference, Math. Programming 57(2), 215-238.

16. Karmakar, N. K., M. G. C. Resende, and K. G. Ramakrishnan (1991), An Interior Point
Algorithm to Solve Computationally Difficult Set Covering Problems, Math. Programming 52(3),
597-618.

17. Kearns, M., Ming Li, L. Pitt, and L. G. Valiant (1987), On the Learnability of Boolean Formulae,
Journal of the Association for Computing Machinery 34(9), 285-295.

18. Peysakh, J. (1987), A Fast Algorithm to Convert Boolean Expressions into CNF, IBM Computer
Science RC 12913 (#57971), Watson, NY.

19. Pitt, L. and L. G. Valiant (1988), Computational Limitations on Learning from Examples, Journal
of the Association for Computing Machinery 35(4), 965-984.

20. Quinlan, J. R. (1979), Discovering Rules by Induction from Large Numbers of Examples: A Case
Study, D. Michie (ed.), Expert Systems in the Micro-Electronic Age, Edinburgh University Press.

21. Quinlan, J. R. (1983), Learning Efficient Classification Procedures and Their Application to
Chess and Games, R. S. Michalski, J. G. Carbonell, and T. M. Mitchell (eds.), Machine
Learning: An Artificial Intelligence Approach, Tioga Publishing Company, Palo Alto, CA, 3-23.

22. Quinlan, J. R. (1986), Induction of Decision Trees, Machine Learning 1(1), 81-106.
23. Triantaphyllou, E., A. L. Soyster and S. R. T. Kumara (1994), Generating Logical Expressions

from Positive and Negative Examples via a Branch-and-Bound Approach, Computers and
Operations Research 21(2), 185-197.

24. Triantaphyllou, E. and A. L. Soyster (1994a), A Relationship between CNF and DNF Systems
Derivable from Examples, ORSA Journal on Computing, to appear.

25. Triantaphyllou, E. and A. L. Soyster (1994b), On the Minimum Number of Logical Clauses which
Can be Inferred from Examples, Working Paper, Department of Industrial and Manufacturing
Systems Engineering, Louisiana State University, Baton Rouge, LA 70803-6409, U.S.A.

26. Triantaphyllou, E. and A. L. Soyster, (1994c), An Approach to Guided Learning of Boolean
Functions From Examples, Working Paper, Department of Industrial and Manufacturing Systems
Engineering, Louisana State University, Baton Rouge, LA 70803-6409, U.S.A.

27. Valiant, L. G. (1984), A Theory of the Learnable, Comm. of ACM 27(11), 1134-1142.
28. Valiant, L. G. (1985), Learning Disjunctions of Conjunctives, Proceedings of the 9th IJCAI,

560-566.
29. Williams, H. P. (1986), Linear and Integer Programming Applied to Artificial Intelligence,

Preprint series, University of Southampton, Faculty of Mathematical Studies, 1-33.
30. Williams, H. P. (1987), Linear and Integer Programming Applied to the Propositional Calculus,

International Journal of Systems Research and Information Science 2, 81-100.

