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Abstract. This paper deals with the problem of identifying a hidden Boolean function ,.~: 
{0, 1}t---> {0, 1} from positive and negative examples. This problem is of paramount importance in 
many real life applications of artificial intelligence. The method proposed in this paper is based on a 
branch-and-bound approach. This approach is an expansion of some earlier work (Triantaphyllou et 
al., 1994). Computational results, comparing the new method with one based on Karmakar's interior 
point method, suggest that the new method is very efficient. 
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1. Introduction 

This paper deals with the problem of inductive inference. That is, given sets of 
examples infer a set of rules. This problem is of considerable importance in 
artificial intelligence and, in particular, in machine learning. A number of 
algorithms which implement learning from examples can be found in 
[5, 8, 20, 21, 22, 23, 15]. An excellent survey on inductive inference approaches is 
given in [1]. Complexity issues of this type of learning have been studied by 
[27, 28, 17, 19]. 

In the type of learning considered in this paper, examples are classified either as 
positive or as negative. Then, the issue is to determine a Boolean expression 
which classifies all the positive and negative examples correctly. An early 
definition of this problem was given in Bongard [2] (the original book was 
published in Russian in 1967). This problem is NP-complete (see, for instance, 
[3, 9]). Some recent developments can be found in [23, 15]. Usually, such a 
Boolean function is expressed in the conjunctive normal form (CNF) or in the 
disjunctive normal form (DNF). See, for instance [4, 7, 10, 11, 12, 13, 14, 29, 30]. 
Peysakh in [18] describes an algorithm for converting any Boolean expression into 
CNF. 

The general form of a CNF and DNF system (i.e., a Boolean function) is 
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defined as (I) and (II), respectively. That is: 

and 

(I) 

and negative examples are known: 

l o  

E + 1 0 and 
0 1 
0 0 

E -  = 

1 0 1 0 
~ 0 0  1 

1 1 1  
0 0 0  " 
0 0 0  
1 1 0  

 II, 
j = l  i �9 

where a i is either A i or -4i. That is, a CNF expression is a conjunction of 
disjunctions, while a DNF expression is a disjunction of conjunctions. These 
conjunctions and disjunctions are also called logical clauses. 

Let {A1, A 2 , a 3 . . . .  A t }  b e a  set of t Boolean predicates or atoms. Each atom 
A; (i = 1, 2, 3 , . . . ,  t) can be either true (denoted by 1) or false (denoted by 0). 
Let ~ be a Boolean function over these atoms. That is, ~- is a mapping from 
{0, 1}t-+ {0, 1} which determines for each combination of truth values of the 
arguments A 1, A2, A3 . . . .  , At of ~ ,  whether ~ is true or false (denoted as 1 
and 0, respectively). For each Boolean function o ~, the positive examples are the 
vectors o E {0, 1} t such that ~ ( v ) =  1. Similarly, the negative examples are the 
vectors v E {0, 1}' such that o~(v) = 0. Therefore, given a function ~- defined on 
the t atoms {A1, a 2 ,  a 3 ,  . . . , A t }  , then a vector v E {0, 1}' is either a positive 
or a negative example. Equivalently, we say that a vector v E {0, 1,}' is accepted 
(or rejected) by a Boolean function ~ if and only if the vector v is a positive (or a 
negative) example of ~.  

In the present paper, a set of positive examples will be denoted as E +. 
Similarly, a set of negative examples will be denoted as E - .  The cardinalities of 
the two sets E + and E -  will be denoted as M 1 and M 2 ,  respectively. Given two 
sets of positive and negative examples, then the constraints to be satisfied by a 
system (i.e., a Boolean function) are as follows. In the CNF case, each positive 
example should be accepted by all the disjunctions in the CNF expression and 
each negative example should be rejected by at least one of the disjunctions. In 
the case of DNF systems, any positive example should be accepted by at least one 
of the conjunctions in the DNF'expression, while each negative example should 
be rejected by all the conjunctions. 

The main idea of  this paper is described in the following illustration. A series of 
examples (binary vectors) is somehow known. These examples are classified as 
either positive or negative. For this illustration suppose that the following positive 
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What we seek is a set of logical clauses which correctly classify all the examples. 
One such set of logical clauses (in CNF form) is as follows: 

(Aa v A4) 

(>i2 v A3) 

(A 1 v A 3 v A4)" 

The main problem examined in this paper is how to construct a set of logical 
clauses (i.e., a Boolean function) which satisfies the requirements of two 
collections of examples E § and E- .  Given two sets of positive and negative 
examples, it is possible that more than one Boolean function satisfy the 
corresponding constraints. For reasons of simplicity, however, we are interested 
in a Boolean function with the minimum number of conjunctions or disjunctions 
(if it is in the DNF or CNF form, respectively). 

2. Some Background Information 

The following two sub-sections briefly describe two clause inference algorithms. 
Both algorithms use collections of positive and negative examples as the input 
data. The first algorithm is based on a branch-and-bound approach and infers 
CNF clauses [23]. The second algorithm infers DNF clauses and is based on 
formulating a clause satisfiability (SAT) problem [15] and then solving this SAT 
by using an interior point method described in [16]. 

Besides the fact that the first algorithm infers CNF systems, while the second 
infers DNF systems, the two approaches have another major difference. The first 
approach uses a heuristic which returns a very small (not necessarily minimal) 
number of disjunctions in the proposed CNF system. However, the second 
approach assumes a given number, say k, of conjunctions in the DNF system to 
be inferred and solves a SAT problem. If this SAT problem is infeasible, then the 
conclusion is that there is no DNF system which has k (or less) conjunctions and 
satisfies the requirements imposed by the examples. Therefore, by using succes- 
sively lower k values the SAT approach can be used to determine a minimum size 
DNF system (by minimum size we mean a system with the minimum number of 
conjunctions). 

It should be emphasized here that it is not very critical whether an inference 
algorithm determines a CNF or DNF system (i.e., CNF or DNF Boolean 
function). In [24] it is shown that it is possible to derive either a CNF or DNF 
system using any clause inference algorithm. Furthermore, some decomposition 
approaches for large scale inference problems can be found in [25]. Finally, an 
approach for guided learning can be found in [26]. Guided learning can be used to 
derive the examples in such a way that a hidden Boolean function can be inferred 
by using only a few examples (when compared with random collections of 
examples). 
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2.1. THE ONE CLAUSE AT A TIME APPROACH 

In [23] an algorithm which infers CNF systems from positive and negative 
examples is developed. In that approach, CNF clauses are generated in a way 
which approximates the minimum number of CNF clauses that constitute the 
recommended CNF system. In this way, a compact CNF system can be derived. 
The strategy followed there is called the One Clause at a T ime  (or O C A T )  
approach. 

The O C A T  approach is greedy in nature. It uses as input data two collections of 
positive and negative examples (denoted as E + and E - ,  respectively). It 
determines a set of CNF clauses which, when taken together,  rejects all the 
negative examples and accepts all the positive examples. The O CA T approach is 
sequential. In the first iteration it determines a single clause (i.e., a disjunction) 
which accepts all the positive examples in the E § set while it rejects as m a n y  

negative examples  in E -  as possible.  This is the greedy aspect of the approach. In 
the second iteration it performs the same task using the original E § set but the 
revised E -  set has only those negative examples which have not been rejected by 
any (i.e., the first) clause so far. The iterations continue until a set of clauses is 
constructed which reject all the negative examples in the original E -  set (see also 
Figure 1). Recall that M 2 denotes the number of the negative examples. Then the 
following theorem states a critical property of the O CA T approach. 

T H E O R E M  1 [23]. The O C A T  approach terminates within M z iterations. 

The core of the OCAT approach is step 2,  in Figure 1. In [23] a branch-and- 
bound based algorithm is presented which solves the problem posed in step 2. The 
O C A T  approach returns the set of desired clauses (i.e., the CNF system) as set C. 
Because the proposed branch-and-bound approach is an extension of the branch- 
and-bound approach developed in [23], the next sub-section briefly highlights the 
old approach. 

i=0; C=~; 
DO WHILE (E- ~ 0) 

Step 1 : i ~---i + 1; /*i indicates the i-th clause */ 
Step 2: Find a clause c i which accepts all members of E § 

while it rejects as many members of E- as possible; 
Step 3: Let E-(ci) be the set of members of E- which are rejected by ci; 
Step4: Let C ,=--C t.)c~; 
Step 5: Let E- *--E- - E-(ci); 

REPEAT; 

Fig. 1. The one clause at a time (OCAT) approach. 
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2.2. THE ORIGINAL BRANCH-AND-BOUND APPROACH 

The original branch-and-bound (B &B) approach is best described with an 
illustrative example. Consider the E + and E -  examples given in the introduction 
section. We number the positive examples as (1, 2, 3, 4) and the negative 
examples as (1, 2, 3, 4, 5, 6). The B & B approach will determine a single clause 
which accepts all the positive examples in the E + set, while rejecting as many 
negative examples from the current E -  set as possible. 

Consider the first positive example (0, 1, 0, 0). Observe that in order to accept 
this positive example at least one of the four atoms A1, A z,  A 3 ,  A4  must be 
specified as follows: (AI=FALSE,  i.e., f i~I=TRUE),  (A2=TRUE) ,  (A3= 
FALSE, i.e., 4 3 = TRUE),  and (A 4 = FALSE, i.e., fi~4 = TRUE). Hence, any 
valid CNF clause must include -A1, or  A z, or  "A3, or  /~4- Similarly, the second 
positive example (1, 1, 0, 0) indicates that any valid CNF clause must include A1, 
or Az,  or A3, or -A4. In this manner, all valid CNF clauses must include at least 
one atom as specified from each of the following sets:  {A1,A2,/~3,-,~4}, 
{A1,A2,fi~3,.,{4}, {.41,A2,A3,A4},  and {A~,A2,_,t3,A4}. 

At this point define as NEG(A,)  the set of the negative examples which are 
accepted by a clause when the atom A k is included in that clause. For the current 
illustrative example the NEG(Ak) sets are presented in Table I. Furthermore, 
denote by ATOMS(v) the set of the atoms that are true in a particular (either 
positive or negative) example v (where v E {1, 0}', and t is the number of atoms). 
In the light of the sets with the negative examples in Table I and the requirement 
the proposed clause to accept all the four positive examples and reject as many 
negative examples as possible, the following minimization problem is derived: 

MINIMIZE 

subject to: 

/31 ~ B1 --" 

/32 ~ B2 = 

133 C B 3 = 

/34 E B 4  = 

] /3i 
i=1 

{{2, 4}, {3, 6}, {2, 4, 5}, {1, 4, 5, 6}} 

{{1, 3, 5, 6}, {3, 6}, {2, 4, 5}, {1, 4, 5, 6}} 

{{2, 4}, {1, 2, 4, 5}, {1, 3, 6}, {2, 3}} 

{{1, 3, 5, 6}, (1, 2, 4, 5}, {2, 4, 5}, {2, 3}}. 

Table I. The NEG(Ak) sets for the illustrative example 

Atom Set of Negative Examples Atom Set of Negative Examples 

A I NEG(A1) = {1, 3, 5, 6} 41 NEG(_A1) = {2, 4} 
A 2 NEG(A2) = {3, 6} Az NEG(/i2) = {1, 2, 4, 5} 
A 3 NEG(A3) = {1, 3, 6} -43 NEG(fi%) = {2, 4, 5} 
A 4 NEG(A4) = {2, 3} ~z~ 4 NEG(A4) = {t, 4, 5, 6} 
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This formulation leads to a B & B search as follows. The search has four stages 
(or levels in the search tree); one stage for each of  the four positive examples. 
The root of the search tree is the empty set. Each interior node (i.e., nodes with 
descendents), say at level h (where 1 ~< h < 4), is connected to t (where t is the 
number of atoms) nodes in the next higher level via t arcs. These t arcs represent 
the atoms that are true in the h-th positive example (i.e., the members of the set 
ATOMS(ah), where a h is the h-th positive example). The nodes (or search states) 
in this graph represent sets of negative examples. 

The set of negative examples which corresponds to a node (state) is the set of 
all the negative examples accepted by the atoms which correspond to the arcs that 
connect that node with the root node. That is, if one is at node (state) YK and 
follows the arc which corresponds to the atom Ai, then the resulting state, say 
YL, is: 

YL = YK U NEG(A,).  

The search tree for the current illustrative example is depicted in Figure 2. Note 
that not all states need to be expanded. This occurs because each node of the tree 
is examined in terms of two fathoming tests. If any of these two tests succeeds, 
then the node is fathomed and it is not expanded further. Consider the two nodes 
which correspond to the two states {2, 4, 5} and {1, 2, 4, 5, 6} in the second stage 
of the search tree (see also Figure 2). Clearly, the states which correspond to the 
leaves (terminal nodes) which have the state {1,2, 4, 5, 6} as an ancestor are 
going to have at least as many members (i.e., negative examples) as the states of 
the leaves (terminal nodes) which have as ancestor the state {2, 4, 5}. This is true 
because subsequent states are derived by performing union operations on these 
two states with the same sets. Therefore, if at any stage of building the search tree 
there is a state which has another state (in the current stage) as a subset, then that 
state (node) can be fathomed without eliminating any optimal solutions. This is 
the first fathoming test. 

For the second fathoming test, suppose that it is known (possibly via a 
heuristic) that one of the terminal states in the B & B search (not necessarily an 
optimal one) has k elements. Then, at any stage of the B & B approach, all states 
which have more than k elements can be deleted from further consideration. This 
is true because any descendent of a state may only get larger at subsequent stages. 
The way these fathoming tests were applied and more on this B & B search, along 
with some computational results, can be found in [23]. 

2.3. CLAUSE INFERENCE AS A SATISFIABILITY PROBLEM 

In [15] it is shown that given two collections of positive and negative examples, 
then a DNF system can be inferred to satisfy the requirements of these examples. 
This is achieved by formulating a satisfiability (SAT) problem and then using the 
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A1 �9 {1,3,5,6) 

} ~  41,2,3,6} 
/ / / ~ e  {1,3,6 (1,2,3,4,5,6) 

A~'~'~ I 41,2,3,4,5,6 ) 
~ 41,3,5,6} / 

/ y  k . ~ . ~ e  {2,3,61~ Al--~e 41,2, 3'5,8} 

A2 �9 13,6 42,3, 
I _ 41'2'3'4'5'6} 

A4 �9 41,3,4,5,6} A3%k�9 {2,3,4,5,6} 

/ ~ ~3/" 41.2,3,~,s,~)/~1" {~,~,~,~,~.6~ 
~ {i,2,3,4,5,6} / 

~/~ 1 4 2 , 4  ~ � 9  42,4,5 ~ 41,2,4,s) %'~'~, 42,4,s)~t~.l 
~4~�9 41,2,4,5, 6} Solution 

{~'--~'A3 0 42,4,S} 

�9 41, , , }~ 

~ i  {1"3'4's'6) ~. 41,3,4,s,6) 
{ 1'2"4'5'6} / 

}~/~.AI:{1'2"3'4"5'6} 

{1,4,5,6 41,2,4,5,6} 
A2"'"L�9 {1,2,4,5,6} 

Fig. 2. The search tree when the original B & B approach is applied on the illustrative 
example. 

interior point method developed in [16] to solve it. This approach pre-assumes the 
value of  k; the number of conjunctions in the DNF system. The SAT problem 
uses the following Boolean variables [15]: 
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S j i  - =  

( a = S J  i 

O'ji Sj i 

~, (1  
Z j  : Oi 

if A 1 is in the ]-th conjunction 
if A~ is not in the j-th conjunction 

if A1 is in the j-th conjunction 

if Ai is not in the ]-th conjunction 

if A~ = 1 in the positive example a ~ E § 

if A~ in the positive example a E E § 

if the Positive example a is accepted by the ]-th conjunction 
otherwise. 

Then, the clauses of this SAT problem are as follows (where n is the number of 
atoms): 

t 
S]iVSj i  , i = l , . . . , n ,  j = l , . . . , k  (1) 

(x) sji v ~.i , j = l  . . . .  , k ,  r = l , . . . , M  2 (2) 
i r i - r  

k 
c~ Vzi ' a = l , . . . , M  1 (3) 

i=1 

-~ i = 1, n j = 1, k a = 1, M 1 (4) O ' ] i V  Z ]  , . . . , , . . . , , . . . , , 

where Pr is the set of indices of A for which A i = 1 in the negative example 
r ~ E - .  Similarly, Pr is the set of indices of A for which A i = 0 in the negative 
example r E E - .  

Clauses of type (1) ensure that never  both  A i and Ai will appear in any 
conjunction. Clauses of type (2) ensure that each negative example is rejected by 
all conjunctions. Clauses of type (3) ensure that each positive example is accepted 
by at least one  conjunction. Finally, clauses of type (4) ensure that z 7 = 1 if and 
only if the positive example a is accepted by the j-th conjunction. In general, this 
SAT problem has k ( n ( M  I + 1) + M2) + M 1 clauses, and k ( 2 n  + M1) Boolean 
variables. A detailed example of this formulation can be found in [15]. 

3. The New Branch-and-Bound Algorithm 

The new branch-and-bound algorithm will also be demonstrated on the examples 
presented in the first section. Recall that these examples are as follows: 

E + =  1 0 
0 1 and 
0 0 

E -  = 
0001 0001 
1 1 

0 0 i " 0 0 
1 1 
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At  first, it will be shown how the algorithm can derive a CNF clause. Next,  the 

basic algorithm will be modified to derive D N F  clauses. Recall that for the CNF 
case, the requirement  is the clause to accept all the positive examples,  while 

rejecting as many  negative examples as possible. 

3.1. GENERATING A CNF CLAUSE 

Define as POS(Ak)  the set of the positive examples which are accepted by a CNF 
clause when the a tom A k is included in that clause. The new B & B algorithm also 
uses the concepts of the N E G ( A k )  and ATOMS(v)  sets, as they were defined in 

the previous section. The POS(A~) sets for the current illustrative example are 
given in Table  II. For  the new search, the N E G ( A k )  sets in Table I are also going 

to be  used. 
Now the search states are described in terms of two sets. The first set refers to 

the positive examples which are accepted by the atoms which correspond to the 
arcs which connect that state (node) with the root node. Similarly, the second set 

refers to the negative examples which are accepted by the atoms which correspond 
to the arcs which connect that state with the root node. Suppose that we are at 
state S~ = [Pi, N~] (where Pi,  N~ correspond to the previous two sets of positive 
and negative examples,  respectively). Now assume that the search considers the 

state (node) which is derived by following the arch which corresponds to the a tom 
A~.  Then,  the new state is: S t = [Pj, Nj], where the new sets Pj and N, are defined 

as follows: 

Pj = Pi U POS(A~), and 

= N~ U N E G ( A k ) .  

Therefore ,  the search continues until terminal states are reached. A state 
Si = [Pi, N~] is a terminal state if and only if the set Pi refers to all positive 
examples.  That  is, if and only if Pi = {1, 2, 3 . . . . .  M1}. Apparent ly ,  a terminal 
state with a minimum cardinality of the set N i is optimal (in the O C A T  sense). In 
the light of the previous considerations, the problem to be solved by the B & B 
search can be summarized as follows (where a~ is either Ag or A~): 

Table II. The POS(Ak) sets for the illustrative example 

Atom Set of Positive Examples Atom Set of Positive Examples 

A~ POS(A~) = ,[2, 4} Aa POS(fi,~) = {1, 3} 
a 2 POS(Az) = {1, 2} ~,z~ 2 POS(fi~2) = {3, 4} 
A 3 POS(A3) = {3} A3 eos(fi~3) = {1, 2, 4} 
a ,  POS(A,) = {3, 4} 4 4 POS(_A,) = (1, 2} 
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Find a set o f  atoms S such that the fo l lowing  two conditions are true: 

I(._J NEG(a~) = MINIMUM,  and 
ai~S 

(..J POS(ai) = E + . 
aiES 

Given the above definitions some useful derivations are possible. We say that a 
state S i absorbs another state S t if by expanding the state Sj we cannot reach any 
better terminal state than the ones derived by expanding the state S i . In such a 
case we call the state S t an absorbed state. From the previous considerations it 
becomes obvious that once a state can be identified to be an absorbed state, then 
it can be dropped from further consideration. Then the following two theorems 
are applicable only when a CNF clause is to be generated and they provide some 
conditions for identifying absorbed states. The proofs of these theorems follow 
directly from the previous definitions and discussion. 

T H E O R E M  2. The state S i = [Pi, N~] absorbs the state S t = [Pj, Nj] i f  the fo l lowing  

condit ion is true: 

Pj C P i and Ni C N j . 

T H E O R E M  3. Suppose  that S~ = [Pi, N~] is a terminal state. Then,  any state 

Sj = [Pt , Nj], such that INjl >! INil, is absorbed by the state S i . 

The search tree for the current illustrative example is depicted in Figure 3. 
Observe that the arcs starting from a given node (search state) are not  in the order 
A1, A2, A 3 , - - .  ,A4 (as was the case with the original B & B  search) but, 
instead, they are ranked.  They are ranked in terms of two criteria as follows. The 
first criterion is to rank the atoms in descending order of the size of the 
corresponding POS(Ak) set (as given in Table II). If there is a tie, then they are 
ranked in ascending order in terms of the size of the corresponding NEG(Ag) set 
(as given in Table I). Therefore, the resulted ranking is as follows: -43, A2,  A4,  
fi~i, A4,  A1,  fii2, A3, In this way, it is more likely to reach terminal states 
quickly, and thus the fathoming test of Theorem 2 can be utilized more 
frequently. 

The search tree in Figure 3 indicates that fathoming of states may occur very 
often. In this figure, Rule #2 refers to the application of Theorem 3. For 
instance, the state [{1, 2, 4}, {1, 2, 3, 5}] needs not to be expanded (i.e., it is an 
absorbed state) because there is a terminal state which has a size of the N~ set 
equal to 3 (the absorbed state has a corresponding value of 4). Since the process 
was successful in determining a terminal state very early, new states are generated 
by considering at first their N i sets. If the N i sets have a size greater or equal to 3, 
then they are fathomed. 

This is the reason why their Pi sets do not  need to be considered. For this 
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[{ }, { } l  I 

/ ~ " ~  [{:.O .P:4}AI r{e~2 dY,4C~li6i}dle red STO P: Rule #2 
/ _ 1 1 - - m . 2 . 3 : } .  {2.3.,.5~j STOP: Rule #2 

~ [ { 1 , 2 . 3 , 4 } ,  {2,4,5}] STOP: terminal state tt 
.[{1,2,4}, {2,4.5}] ~ �9 STOP: Rule #2 (tlzis is also an optimal state) 

tA, ~ S T O P :  Rule #2 
/ ~ S T O P :  Rule #2 

STOP: Because~ was considered 

[ ~ STOP: Already considered 
[ ~. . . . . .~$TOP: Already considered 
/ / / / I ~ ' X X ,  {2,3,6}] STOP: Rule #2 
/ ~ ~  [XXX, {2,3,4,6_}] STOP: Rule #2 

/ [A { : ,2 } ,  { 3 , 6 } 1 ~ = ~ _ ~ ~ . . ~ O ; :  INN~GG((~,)I >3  3 

STOP: I NEO(A~) I > 3 

/ ....,..~FSTOP: I NEG(7,,) I > 3 
/ / / [ X X X .  {2,3,6}1 STOP: Rule#2 
/ / / ~ , . , . . . . . , . . , . , . , , ~  S TO P: Already . . . .  idered 
t ~ . - . . " " ' ~ ~ [ X X X ,  {2,3,4}1 - STOP: Rule#2 

j{3,4}, { 2 , 3 } 1 ~  t_STOP: [ NEO(Aa) I > 3 

STOP: [ NEG(As) I > 3 

~..e "STOP: I NEG(X,) I > 3 
~ . . . . , . . , , , ~STOP :  Already considered 

~ ~ . . . . . . . . . . , s ~ T O  P: Already . . . .  idered 

[_{1,3,, { 2 , 4 , , ~ ~ ' ~ O P P :  Already considered 

A, ~ S T O P :  I .Eo(X,) I z 3 
I NEG(A,) I > 3 

~ --STOP [ NEG(A2) I _> 3 
STOp:- I .Eo(A,) t _> 3 

L ~ [{1,2}, {1,4,5,6}1 STOP: Rule #2 

AI9 4 STOP: Rule #2 
~ N N ~  [{-' }' {1'3'5'6}] A2 

[{3,4}, {1,2,4,5}] STOP: Rule #2 
\A, 

[{3}, 11,3,6}1 STOP: Rule#2 

Fig. 3. The searc[1 tree under the New Branch-and-Bound approach. 

reason they are indicated with the symbol X X X  in Figure 3. It is interesting to 
observe that any arc A k for which the size of  the N E G ( A k )  set is greater or equal 
to 3 necessarily leads to an absorbed state. Therefore,  all states derived by such 
arcs are fathomed.  N o w  consider the state [{1, 2},  {3, 6}]. This state was created 
by applying the atom A 2 on the root state. If we  apply the negation of  A 2 ( i .e . ,  
-42) on  any of  its descendent states, then the new state would have both the atoms 
A 2 and -42. However ,  if that happens then that state would accept all the 
negative (and positive) examples.  This is the reason why the seventh child state of  
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[(1,2}, (3,6}] is fathomed in the B & B  search. In this illustrative example 
Theorem 1 was never utilized. 

In Figure 3 only the arcs of the first level bear the indication of the appropriate 
atom. Arcs in the second level bear no indication of atom because of space 
limitations in this figure. However, the atoms in the order 4 3 , A2, A4, 41, 4 4 ,  
A1, 4 2 ,  A3 are assumed on these arcs as well. Since the state 
[(1,2,  3, 4}, {2,4,5}] is the only unfathomed terminal state, this is also an 
optimal state. Therefore, the derived CNF clause is ( 4  3 v A1). This clause 
accepts all the positive examples and also accepts the negative examples {2, 4, 5} 
(that is, it rejects the negative examples {1, 3, 6}). 

From the previous considerations it follows that there is a great advantage to 
reach terminal nodes early in the search process. In this way, the minimum size of 
their N~ sets can be used to effectively fathom search states. This situation 
suggests the application of the B & B search in two phases (as was the case with 
the original B & B search). During the first phase only a very small number (say, 
10) of active states is allowed. If there are more than 10 active states, then they 
are ranked according to their Pi and N~ sizes (i.e., in a manner similar to ranking 
the atoms). In this way, the states with the highest potential of being optimal are 
kept into memory. This is the principle of beam search in artificial intelligence 
(see, for instance, [8]). At  the end of phase one, a terminal state of small 
cardinality becomes available. Next, phase two is initiated. During the second 
phase a larger number (say, 50) of active states is allowed. However, states now 
can be fathomed more frequently because the size of a small N~ set of a terminal 
state is known. Also note that the new B & B search does not have to follow a 
fixed number of stages (as was the case with the original B & B search). 

An important issue with the previous two phases is to be able to decide when a 
terminal state is optimal (in the OCAT sense). As it was mentioned above, 
memory limitations may force the search to drop states which are not absorbed by 
any other state. Therefore, there is a possibility to drop a state which could have 
lead to an optimal state (and thus to an optimal clause). 

Suppose that L non-absorbed states had to be dropped because o f  memory 
limitations. Let K 1 , K 2 , K 3 . . . .  , K L represent the cardinalities of their corre- 
sponding N i sets. Next, define the quantity KMI N as the minimum of the previous 
L numbers. Similarly, suppose that the B & B process has identified N terminal 
states. Let Y1, Y2, Y3,. �9 �9 YN represent the cardinalities of their corresponding 
N~ sets. Define as YMIN the minimum of the previous N cardinalities. Then, the 
previous considerations lead to the proof of the following theorem which states a 
condition for establishing optimality. 

T H E O R E M  4. A terminal state S i --[Pi,  Ni] is also an optimal state i f  the 
following two conditions are true: 

IN/[  = YMIN and KMI N >! YMtN" 
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Note that this theorem can be applied after each one of the two phases. 
Obviously, if it is applicable after the first phase, then the second phase does not 
need to be initiated. The following lemma states a fact when optimality is not 
provable. 

L E M M A  1. Suppose that the following relation is true: KM~ N < YMIN" Then, an 
optimal clause accepts no less than KM~ N negative examples. 

This lemma indicates that if optimality cannot be proven, then it is still possible to 
establish a lower limit on the number of negative examples which can be accepted 
by an optimal clause (or, equivalently, an upper limit on the number of negative 
examples which can be rejected by an optimal clause). 

Finally, it should be stated here that the CNF version of the B & B algorithm 
was implemented in FORTRAN and used in the computational experiments 
described in a following section. The next sub-section briefly describes a 
modification of this B & B approach which can derive DNF systems. 

3.2. GENERATING A DNF CLAUSE 

The previously described B & B search can be easily modified to generate DNF 
clauses. Recall that the requirements now are as follows. Every positive example 
should be accepted by at least one of the conjunctions (single DNF clause). Also, 
every negative example should be rejected by all the conjunctions. Therefore, the 
DNF clause proposed by the B & B approach during a single OCAT iteration 
should reject all the negative examples and accept as many positive examples as 
possible. 

The search states are defined in a manner analogous to that of the CNF case. 
Each state is described in terms of two sets. The first set (denoted by Pi) refers to 
the positive examples which are accepted by the atoms which correspond to the 
arcs which connect that state (node) with the root node. Similarly, the second set 
(denoted by Ni) refers to the negative examples which are accepted by the atoms 
which correspond to the arcs which connect that state with the root node. 
Suppose that we are at state S i = [Pi, N~]. Now assume that the search considers 
the state (node) which is derived by following the arch which corresponds to the 
atom A k . Then, the new state is: Sj = [Pj., Nj], where the new sets Pj and Nj are 
defined as follows: 

Pj = Pi VI POS(Ak),  and 

Nj = N,. N NEG(Ak) .  

In other words, instead of set union now there is set intersection. A state 
Si = [P~, N~] is a terminal state if and only if the set N~ is equal to the empty set. 
That is, a state is terminal if it rejects all the negative examples. A terminal state 
with the maximum cardinality of the set Pi is optimal (in the OCAT sense). 



82 EVANGELOS TRIANTAPHYLLOU 

The concept of absorbed states is the same as in the CNF case. However ,  in the 
light of the previous definitions Theorem 3 takes the following form: 

T H E O R E M  5. Suppose  that S i = [Pi, Ni] is a terminal state. Then,  any state 

Sj = [Pj, Nj], such that [Pjl <<- IPit, is absorbed by the state S i . 

The atoms in the arcs now are ranked in an analogous manner  as in the previous 
sub-section. The first criterion is to rank the atoms in ascending (instead of 
descending) order  of the size of the corresponding NEG(Ak)  set. If there is a tie, 
then they are ranked in descending (instead of ascending) order in terms of the 
size of corresponding POS(Ak) set. 

As was the case with the CNF version of the B & B algorithm, suppose that L 
non-absorbed states had to be dropped because of memory limitations. Let  K 1 , 
K2,  K 3 . . . .  , K L represent the cardinalities of their corresponding Pi sets (note 
that before we considered the N i sets). Next, define the quantity KMA x as the 
m a x i m u m  of the previous L numbers (before we Considered the minimum 
values). Similarly, suppose that the B & B process has identified N terminal 
states. Let  Y1, Y2, YB,. �9 �9 YN represent the cardinalities of their corresponding 
Pe sets. Define as YMAX the m a x i m u m  of the previous N cardinalities. Then,  the 
previous considerations lead to the proof of a theorem, analogous to Theorem 4, 
regarding the establishment of optimality. 

T H E O R E M  6. A terminal state S i = [Pi ,  Ni] is also an optimal state i f  the 

fo l lowing  condit ions are true: 

IPil = Y~AX and KMA x ~< YMAX" 

The following section briefly describes a modification of the original SAT method. 
As it was described in Section 2.3, the original SAT method derives DNF 
systems. The modified version derives CNF systems. After that development both 
the O C A T  with the B & B algorithm and the SAT approach can derive CNF or 
DNF systems. 

4. An SAT Approach for Inferring CNF Clauses 

The SAT formulation for deriving CNF systems is based on the original SAT 
formulation for deriving DNF systems (as described in Section 2.3). The variables 
used in the new formulation are similar to the ones used in the DNF case. They 
are defined as follows: 
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if 
s/~ = if 

' {01 if 
s~ = if 

{1 
Z j  = O, 

The clauses of this 
disjunctions are as 

t 
S j i  V S j i  , i 

k 

V z j ,  /3=1 . . . .  , M  2 
j=a 

-~ i = l ,  . , n ,  O' j i  V Z j ~ . �9 

Ai is in the j-th disjunction 
A~ is not in the j-th disjunction 

41 is in the j-th disjunction 

Ai is not in the j-th disjunction 

if A i = 1 in the negative example /3 E E -  

if A~ = 0 in the negative example /3 ~ E -  

if the negative example/3 is accepted by the j-th disjunction 
otherwise. 

SAT formulation for deriving a CNF system which has up to k 
follows (where n is the number of atoms): 

=1  . . . .  , n ,  j = l , . . . , k  (1) 

(v) @ , j = l , . . . , k ,  r = l , . . . , M  a (2) 
l �9 

(3) 

j = l , . . . , k ,  / 3 = l , . . . , M  2, (4) 

where Pr is the set of indices of A for which A i = 1 in the positive example 
r E E +. Similarly, /5 r is the set of indices of A for which Ai = 0 in the positive 
example r E E +. 

Clauses of type (1) ensure that never both A i and .A~ will appear in any 
disjunction at the same time. Clauses of type (2) ensure that each positive 
example will be accepted by all k disjunctions. Clauses of type (3) ensure that 
each negative example will be rejected by at least one of the k disjunctions. 

-~ = 1 if and only if the negative example Finally, clauses of type (4) ensure that z j 
/3 is rejected by the j-th conjunction. In general, this SAT problem has k(n(M 2 + 

1) + Ma) + M 2 clauses, and k(2n + M2) Boolean variables. 

5. The Rejectability Graph of Two Collections of Examples 

This section presents the motivation and definition of a special graph, called the 
rejectability graph, which can be easily derived from positive and negative 
examples. The concept of this graph was first introduced in [25]. This graph can 
be used to establish a lower limit on the number of clauses which can be derived 
from positive and negative examples. When this lower limit is equal to the number 
of clauses derived by OCAT, then the conclusion is that O C A T  derived a system 

with the min imum number  o f  clauses. 
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To understand the motivation for introducing this graph consider a situation 
with t = 5 atoms. Suppose that the vector v 1 = (1, 0, 1, 0, 1) is a positive example 
while the two vectors v 2 = (1, 0, 1, 1, 1) and v 3 = (1, 1, 1, 0, 1) are negative 
examples. Recall that ATOMS(v) denotes the set of the atoms which are true in a 
particular (either positive or negative) example v (where v E {1, 0,} t, and t is the 
number of atoms). Now observe that there is no single CNF clause which can 
simultaneously reject both the two negative examples v 2 and v3, while at the same 
time accept the positive example v a . 

This is true because any clause which simultaneously rejects the two examples 
v 2 and v3, should not contain any of the atoms in the union of the two sets 
ATOMS(v2) and ATOMS(v3). But if none of the atoms of the set 
{AI ,  A2, A2, A3, A4, A4, As} = ATOMS(v2) tO ATOMS(v3) is present in the 
clause, then it is impossible to accept the positive example v 1 = (1, 0, 1, 0, 1). 
Therefore, given any clause which accepts the positive example v a , the previous 
two negative examples v 2 and v 3 cannot also be rejected by this clause. In general, 
given a set of positive examples E +, then two negative examples o r and v 2 are 
rejectable by a single clause if and only if the condition in the following theorem 
is satisfied: 

T H E O R E M  7 [25]. Let E + be a set of positive examples and vl ,  v 2 be two 
negative examples. There exists a clause which accepts all the positive examples and 
rejects both negative examples v 1 and v 2 if and only if: 

ATOMS(vi)  ~_ATOMS(vl)  tO ATOMS(v2),  for each positive example 

v i E E  + . 

The above theorem follows directly from the previous considerations. Given two 
collections of positive and negative examples, denoted as E + and E - ,  respective- 
ly, Theorem 7 motivates the construction of a graph G = (V, E)  as follows: 

v =  v2,  v3 . . . .  , vM2) 

where M 2 is the size of  the E -  set ,  

E = {(V/, Vj) if and only if the i-th and the j-th examples in E -  are 

rejectable by a single clause (subject to the examples in E+)} .  

We denote this graph as the rejectability graph of E § and E - .  The previous 
theorem indicates that it is computationally straightforward to construct this 
graph. If there are M 2 negative examples, then the maximum number of edges is 
m 2 ( m  2 - 1)/2. Therefore, the rejectability graph can be constructed by perform- 
ing Mz(M 2 - 1 ) / 2  simple rejectability examinations. The rejectability graph G of 
a set of positive and a set of negative examples possesses a number of interesting 
properties (for more details see [25]). The following theorem refers to any clique 
of the rejectability graph. 
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THEOREM 8 [25]. Suppose that the two sets E § and E -  are given and ~ is a 
subset of  k negative examples from E -  (k <<- size of  set E - )  with the property that 
the subset can be rejected by a single CNF clause which also accepts each of  the 
positive examples in E § Then, the vertices corresponding to the k negative 
examples in the rejectability graph G form a clique of  size k. 

The previous theorem states that any set of negative examples which can be 
rejected by a single clause corresponds to a clique in the rejectability graph. 
However, the converse is not true. That is, not every clique in the rejectability 
graph corresponds to a set of negative examples which can be rejected by a single 
clause. Let G be the complement of the rejectability graph G of the two sets of 
examples. At this point let w(G) be the size of  the maximum clique of the graph 
G. Then, the following theorem states a lower bound on the minimum number of 
clauses which can reject all the negative examples in E - ,  while accepting all the 
positive examples in E § 

THEOREM 9 [25]. Suppose that E + and E -  are the sets of  the positive and 
negative examples, respectively. Let r be the minimum number of  clauses which 
reject all the examples in E - ,  while accepting all the examples in E § Then, the 
following relation is true: 

r>~w(G) . 

As an illustrative example, consider the E + and E -  examples given in the 
introduction section. The corresponding rejectability graph and its complemented 
graph are depicted in Figure 4. The size of the maximum clique of the 
complemented graph is 3. Thus, a lower limit on the number of clauses is 3. Since 

The Rejectability Graph 

V~ 

The Complemented Graph 

Fig. 4. The rejectability and its complemented graph of E + and E-. 
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the OCAT approach yields 3 clauses for these data, and 3 is a lower bound, then 
we can conclude that for this case OCAT derived a minimum size system. 

6. Some Computat ional  Results 

Several computational experiments were conducted in order to gain a better 
understanding of the performance of the new branch-and-bound approach. These 
experiments were conducted in a manner similar to the experiments reported in 
[15]. At first, a system was chosen to be the "hidden logic". This system is hidden 
in the sense that we try to infer it from limited collections of positive and negative 
examples. The systems used as "hidden logic" are exactly the same as the ones 
also used in [15]. These are the 15 systems depicted in Table III. 

Once a "hidden logic" is selected, a number of random examples was 
generated. Each random example was classified according to the "hidden logic" 

Table III. Description of the systems used as "hidden logic" in the computer experiments 

8A (A 4 v 4 7 )  A ( 4  5 v A , )  16D ( 4  5 V 4 8 V A_10 V A16 ) A 
A (A ,  v A 2 v 46) (2~ 2 v "412 v A16 ) A 

(.1~ v . i ,~) ^ 
(A~v4~vA,) 

8B (41  V 4 4 V A6) A (A2) 16E (A~ v 4 2 v A 3 v 4 , )  A 
A ( 4 2  v A 8 )  (As v A6 v L7 v As_) A 

(A 9 v 41o v A~I v A12 ) A 
(413 V A14 v 415 v AI~ ) 

8C 

8D 

(As) A (A 6 V illS) A (A7) 32A 

(46)  A (/~2) A (43 V -i7) 32B 

8E (As)  A (A 2 v As)  A 32C 
(fii 3 v As)  

16A (A 1 V 412 ) A (A 2 V A 3 V As) 32D 
^(Ag) A(47) 

16B (_-43 v A ~  v A!s ) v (_4 3 v 32E 
A l l  ) A (A 2 v Axo v A16) 
A (A1 v A2)  

16C (A 4 v 4 7 v A1, ) A (A 4 v A10 
v A14 ) A ( 4  9 v z414 V Als ) 
A ( 4  3 v As)  

A V 412 ) A 
(A~ v 4~ v A~) ^ 
(A~ v ~ v A~6) 

(A 1 v A 2 v 4 9 v 412 v Aal ) A 

( A .  v 4 ~  v A~,) ^ 
(A 2 V 4 5 v 420 v A32 ) 

(.42 v 4 9 v fi*~2 v A31 ) A 
(A 2 v d2o v A32 ) A 
(A 1 v A 2 V A19 V zZ~23 V A26 ) 

( A  4 v A n v 422 ) A 
(A z V A12 V 41s V z~29 ) A 
( 43  v A 9 v A2_o) ~3 
(410 v Al l  v m:z 9 v A32 ) 

(A 9 v Alo v A23 ) A 
(A~ v A~9 v fi~) ^ 
(A 2 v 4 4 v A 6 V 4 7 V A19 V 432 ) 
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as either positive or negative. The random examples used in these experiments 
are identical with the ones used in [15]. After the collections of the E + and E -  
examples were generated this way, the OCAT approach with the CNF version of 
the new B & B algorithm were applied. In order to derive a DNF system, the 
main result in [24] was applied. 

To see how this can be accomplished let v be an example (either positive or 
negative). Then, 6 is defined as the complement of example v. For instance, if 
v = (1, 0, 0), then t7 = (0, 1, 1). The following definition introduces the concept of 
the complement of a set of examples. Let E be a collection of examples (either 
positive or negative). Then, /~ is defined as the complement of  the collection E. 
Recall that in the first section the general form of a CNF and DNF system was 
defined as (I) and (II), respectively. 

V ai 
j=a icoj 

and 

/ = 1  i j 

where a i is either A i o r  Ai. Then, the following theorem states an important 
property which exists when CNF and DNF systems are inferred from collections 
of positive and negative examples. 

T H E O R E M  10 [24]. Let E + and E -  be the sets of  positive and negative examples, 
respectively. A CNF system given as (I) satisfies the constraints of  the E + and E -  
sets if and only if the DNF system given as (II) satisfies the constraints of  E -  
(considered as the positive examples) and E + (considered as the negative exam- 
ples). 

Furthermore,  in these experiments the rejectability graph and the maximum 
clique of its complemented graph were determined as well. For the maximum 
clique the computer code reported in [6] was used. Then Theorem 9 was used to 
establish the lower limit reported in Table IV. 

When a system was inferred, it was compared in terms of 10,000 random 
examples with the "hidden logic". That is, 10,000 random examples were 
generated and then they were classified according to these two systems. The 
percentage of the times the two systems agreed, was reported as the accuracy of 
the inferred system. For the case of the systems which were defined on 8 atoms 
(i.e., systems 8A1, 8A2, 8 A 3 , . . . ,  8E2), all possible 256 examples were consid- 
ered. The active list in the B & B search contained up to 10 search states at any 
time. However, this restriction did not prevent the search from reaching optimal 
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Table IV. Solution statistics 

Problem [ SAT Solution Characteristics ] 
Chatactctisties 

OCAT Solution Charactedsties 

+1 Noo k I hc++lA ..... N~176 .... A .. . .  ,J c+t+ ID Examples value Clauses Clauses limit comparison 
with SAT 

8AI I0 3 3 0.42 0.86 3 2 0.004 0.81 105 
8A2 25 6 3 21.37 0.87 3 2 0.004 0.86 5,343 
8A3 50 6 3 29.77 0.92 3 3 0.007 0.92 4,253 
8A4 100 6 3 9.33 1 .DO 3 3 0.015 1,00 622 

8BI 50 3 2 2.05 0.97 2 2 0.002 0.97 1,02.5 
8B2 I00 6 3 97.07 0.97 3 3 0.006 0.99 16,178 
8B3 150 10 3 167.07 0.96 3 3 0.007 0.96 23,867 
8B4 200 6 3 122.62 1 .DO 3 3 0.009 0.97 13,624 

8CI 50 10 2 8.02 0.94 2 2 0.002 0.94 4,010 
8C2 IDO 10 3 84.80 1.00 3 3 0.005 0.94 16,960 

8DI 50 10 3 116.98 0.94 3 3 0.004 1.00 29,245 
8D2 1DO 10 3 45.80 1 .DO 3 3 0.006 1 .DO 7,620 

8El  50 10 3 122.82 1.00 3 3 0.DO5 1 .DO 24,564 
8E2 100 10 3 16.68 1 .DO 3 3 0.007 1 .DO 2,383 

16A1 1DO 15 4 2,038.55 1.DO 4 3 0.065 1.DO 31,362 
16A2 300 6 4 607.80 1.00 4 4 O. 134 1 .DO 4,536 

16BI 200 8 5 78.27 0.99 4 4 0.402 1.DO 195 
16B2 400 4 4 236.07 1.00 4 4 0.284 I .DO 831 

16C1 1DO 20 5 757.55 0.87 4 4 01314 1.00 2,413 
16C2 400 4 4 520.60 1.DO 4 4 0.477 1.00 1,091 

16D1 200 10 4 1,546.78 1.00 4 4 0.089 1.00 17,380 
16D2 400 4 4 544.25 1.00 4 4 0.105 1.00 5,183 

16El 200 15 5 2,156.42 0.99 5 4 1.545 1.DO 1,396 
16E2 400 4 4 375.83 1.DO 4 4 2.531 1.00 149 

32A1 250 3 3 176.73 1.00 3 3 0.134 1.DO 1,319 

32B1 50 3 3 5.02 0.83 2 1 0.044 0.93 114 
32B2 100 3 3 56.65 0.96 3 2 O. 058 0.96 977 
32B3 250 3 3 189.80 0.97 3 2 0.143 0.97 1,327 
32B4 300 3 3 259.43 1.00 3 2 0.198 0.99 1,310 

32C1 50 3 3 23.85 0.80 2 1 0.019 0.92 1,255 
32C2 100 3 3 9.38 0.g8 2 1 0.020 0.91 469 
32C3 150 3 3 14.27 0.92 3 1 1.969 0.91 7 
32C4 1DO0 3 3 154.62 I .DO 3 3 0.654 1 .DO 236 

32D1 50 4 4 65.65 0.74 3 1 0.197 0.81 333 
32D2 1DO 4 4 178.10 0.91 3 2 0.308 0.92 578 
32D3 400 4 4 1,227.40 1.DO 4 2 1.103 1.DO 1,113 

32E1 50 3 2 8 . 3 3 ,  0.86 2 1 0.015 0.83 555 
32E2 1DO 3 3 9.67 0.97 2 1 0.096 0.99 101 
32E3 200 3 3 132.83 0.98 3 2 0.105 0.98 1,265 
32E4 300 3 3 276,93 0.98 3 2 0.209 0.99 1,325 
32E5 400 3 3 390.22 0.98 3 2 O, 184 0.98 2,121 

solutions in any OCAT iteration. It should be stated here that only one phase was 
enough to derive an optimal clause. 

The computational results are reported in Table IV. The same table also depicts 
the results derived by using the  SAT approach. The SAT results were derived by 
using a VAX 8700 running 10th Edition UNIX.  The  code for the SAT tests was 
written in F O R T R A N  and in C. The SAT results were originally reported in [15]. 
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The OCAT results were derived by using an IBM 3090-600S computer and the 
code was written in FORTRAN. As it can be seen from this table the OCAT 
approach outperformed the SAT approach in an order of many times. If we 
exclude the case of the test with ID 32C3, then for all the other cases OCAT was 
101 to 31,362 times faster than the SAT approach. On the average, OCAT was 
5,579 times faster. 

Observe at this point that a direct comparison would have required the SAT 
results to be generated either in FORTRAN or in C (not both) and the OCAT 
approach on the same (single) language as the SAT approach. However, this is 
impractical and it seems that one has to compromise in comparing the two codes. 
Thus, the current results can convey only a flavor on the relative performance of 
the two methods, and by no means should be considered as a direct comparison of 
the two approaches. 

In terms of the accuracy index, both the SAT and OCAT approaches 
performed considerably well. It should also be stated here that when the lower 
limit is equal to the number of clauses derived by OCAT, then we can conclude 
that OCAT derived a minimum size (in terms of the number of clauses) system. 
Note that this situation occurred in these experiments 51.2% of the time. 
However, if the lower limit is less than the number of clauses, then this does not 
necessarily imply that OCAT failed to derive a minimum size system. 

Recall, that if optimality (i.e., the minimum number of inferred clauses) is not 
proven in the OCAT case, then the SAT approach can be applied with 
successively decreasing k values. When an infeasible SAT problem is reached, the 
conclusion is that the last feasible SAT solution yielded an optimal system. Finally, 
it is interesting to emphasize here that in these computational experiments it was 
found that, most of the time, OCAT derived a minimum size system. Therefore, it 
is anticipated that under the proposed strategy the SAT approach (which is very 
CPU time consuming) does not have to be used very often. Optimality (i.e., the 
minimum number of clauses) can be checked by comparing the number of clauses 
derived by OCAT with the lower limit established in Theorem 9. 

Table V presents the results of solving some large problems. In these tests the 
number of atoms is 32, the total number of examples is equal to 1,000, and each 
"hidden logic" was assumed to have 30 clauses. The strategy followed in these 

Table V. Solution statistics of some large test problems (number of atoms = 32) 

Problem Characteristics OCAT Solution Characteristics 

Problem ID No. of Total No. I E +[ I E-I CPU No. of Lower Accuracy 
Clauses of Examples Time Clauses Limit 

32H1 30 1,000 943 57 135.71 17 3 84.13% 
32H2 30 1,000 820 180 45.18 10 3 93.83% 
32H3 30 1,000 918 18 175.50 7 2 95.85% 
32H4 30 1,000 944 56 64.16 20 2 82.84% 
32H5 30 1,000 988 12 13.41 5 2 97.83% 
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experiments is the same as in the previous tests. The numbers of positive and 
negative examples are shown as well. Table VI presents the exact structure of the 
"hidden" and inferred systems of the first of these test problems (i.e., problem 
32H1). In Table IV only the indexes of the atoms are depicted (in order to save 
space). For instance, the first clause of the inferred system is represented by the 
list [13, 15, 25, - 6 ,  -19,  -30,  -32] which implies the CNF clause: 

(A13 v A15 v A25 v ~t 6 v ~119 v ~130 v ~132 ) . 

Observe that now the CPU times are considerably (with the OCAT standards) 
higher. However, relatively speaking these times are still kept in low levels. The 
lower limit, however, is not tight enough. Furthermore, determining the maxi- 
mum clique of the complemented rejectability graph took considerably more time 
than determining the infrared system. It should also be stated here that the 
"hidden" systems were not defined in terms of a minimum representation. That 
is, it might be possible to represent an equivalent system with less than 30 clauses. 
The OCAT approach always returned, compared to the original "hidden" system, 
a very compact system. 

Finally, the accuracy of the inferred system was rather high. The size of the 
population of all possible examples is 232 = 4.29496 x 109. Out of these examples, 
the tests considered only 1,000 random inputs. This represents a very small 
sample of the actual population and, therefore, the corresponding accuracy values 
can be considered rather high. The computational results in Tables II and V 
suggest that the OCAT approach, when it is combined with the new branch-and- 
bound algorithm, constitutes an efficient and effective strategy for inferring a 
logical system from examples. 

7. Conclusions 

The results of the computational experiments suggest that the proposed OCAT 
approach, when it is combined with the new branch-and-bound algorithm, 
provides a very efficient way for inferring logical clauses from positive and 
negative examples. It is interesting to observe that OCAT also derived systems 
for which very often it could be proved (by using the idea o f  the rejectability 
graph) to be of minimum size. Furthermore, the OCAT and the SAT approaches 
can be combined into a single strategy in order to efficiently derive a minimum 
size CNF and DNF system. 

The high CPU time efficiency and effectiveness of the proposed method make it 
to be a practical method for inferring clauses from examples. Future work can 
focus on inferring Horn clauses (and not just general CNF or DNF systems as is 
the case currently). Another interesting expansion of this work is to apply these 
concepts on partially defined examples. That is, examples now are not defined in 
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the domain (0, 1} t, but instead in the domain {0, 1, ,)t where * indicates 
unknown value. 

The problem of learning rules from past experience is the keystone in building 
truly intelligent systems. Furthermore, more efficient decomposition approaches 
are required in order to make learning feasible for large scale applications. More 
research in this area has the potential of making more contributions in this vital 
area of artificial intelligence and operations research. 
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